[1] |
Wang XS, Zhuang QY, Weng XS, et al. Etiological and clinical analysis of osteonecrosis of the femoral head in Chinese patients[J]. Chin Med J (Engl), 2013, 126(2): 290-295. PMID: 23324279.
|
[2] |
Al-Omari AA, Aleshawi AJ, Marei OA, et al. Avascular necrosis of the femoral head after single steroid intra-articular injection[J]. Eur J Orthop Surg Traumatol, 2020, 30(2): 193-197. DOI: 10.1007/s00590-019-02555-8.
|
[3] |
Lai SW, Lin CL, Liao KF. Evaluating the association between avascular necrosis of femoral head and oral corticosteroids use in Taiwan[J]. Medicine (Baltimore), 2020, 99(3): e18585. DOI: 10.1097/MD. 00000 00000018585.
|
[4] |
Liu G, Luo GB, Bo ZD, et al. Impaired osteogenic differentiation associated with connexin 43/microRNA-206 in steroid-induced avascular necrosis of the femoral head[J]. Exp Mol Pathol, 2016, 101(1): 89-99. DOI: 10.1016/j.yexmp.2016.07.009.
|
[5] |
Niger C, Buo AM, Hebert C, et al. ERK acts in parallel to PKCdelta to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts[J]. Am J Physiol Cell Physiol, 2012, 302(7): C1035-C1044. DOI: 10.1152/ajpcell.00262.2011.
|
[6] |
Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone[J]. J Clin Invest, 1998, 102(2): 274-282. DOI: 10.1172/JCI2799.
|
[7] |
康鹏德, 裴福兴, 杨静, 等. 糖皮质激素诱导骨细胞脂肪化与股骨头坏死的病理机制研究[J]. 中华骨科杂志, 2013, 33(7): 762-769. DOI: 10.3760/cma.j.issn.0253-2352.2013.07.013.
|
[8] |
Kim J, Ko J. A novel PPAR gamma2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation[J]. Cell Death Differ, 2014, 21(10): 1642-1655. DOI: 10.1038/cdd.2014.80.
|
[9] |
Hernigou P. Cellular therapy for the treatment of osteonecrosis: from bench to bedside[J]. Instr Course Lect, 2020, 69: 139-148. PMID: 32017725.
|
[10] |
马信龙, 刘泽朋, 马剑雄, 等. 激紊性股骨头坏死股骨头内Runx2、Osterix及AJ18的动态表达[J]. 中华骨科杂志, 2010, 30(1): 67-72. DOI: 10.3760/cma.j.issn.0253-2352.2010.01.016.
|
[11] |
Ciesla M, Skrzypek K, Kozakowska M, et al. MicroRNAs as biomarkers of disease onset[J]. Anal Bioanal Chem, 2011, 401(7): 2051-2061. DOI: 10.1007/s00216-011-5001-8.
|
[12] |
McCarthy JJ. MicroRNA-206: the skeletal muscle-specific myomiR[J]. Biochim Biophys Acta, 2008, 1779(11): 682-691. DOI: 10.1016/j.bbagrm.2008.03.001.
|
[13] |
Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation[J]. Proc Natl Acad Sci U S A, 2009, 106(49): 20794-20799. DOI: 10.1073/pnas.0909311106.
|
[14] |
Zhang ZH, Jin AM, Yan DL. MicroRNA206 contributes to the progression of steroidinduced avascular necrosis of the femoral head by inducing osteoblast apoptosis by suppressing programmed cell death 4[J]. Mol Med Rep, 2018, 17(1): 801-808. DOI: 10.3892/mmr.2017.7963.
|
[15] |
Chen Y, Yang YR, Fan XL, et al. miR-206 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells by targetting glutaminase[J]. Biosci Rep, 2019, 39(3): R20181108. DOI: 10.1042/BSR20181108.
|
[16] |
Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development[J]. Nucleic Acids Res, 2006, 34(20): 5863-5871. DOI: 10.1093/nar/gkl743.
|
[17] |
Lima F, Niger C, Hebert C, et al. Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-delta/Runx2-dependent mechanism[J]. Mol Biol Cell, 2009, 20(11): 2697-2708. DOI: 10.1091/mbc.e08-10-1079.
|
[18] |
Lin FX, Zheng GZ, Chang B, et al. Connexin 43 modulates osteogenic differentiation of bone marrow stromal cells through GSK-3beta/beta-catenin signaling pathways[J]. Cell Physiol Biochem, 2018, 47(1): 161-175. DOI: 10.1159/000489763.
|
[19] |
Abdallah BM, Ali EM. Butein promotes lineage commitment of bone marrow-derived stem cells into osteoblasts via modulating ERK1/2 signaling pathways[J]. Molecules, 2020, 25(8): 1885. DOI: 10.3390/molecules25081885.
|
[20] |
Lee JS, Kim ME, Seon JK, et al. Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways[J]. Stem Cell Res, 2018, 26: 28-35. DOI: 10.1016/j.scr.2017.11.016.
|
[21] |
Lee CH, Huang YL, Liao JF, et al. Ugonin K promotes osteoblastic differentiation and mineralization by activation of p38 MAPK- and ERK-mediated expression of Runx2 and osterix[J]. Eur J Pharmacol, 2011, 668(3): 383-389. DOI: 10.1016/j.ejphar.2011.06.059.
|
[22] |
Gupta A, Leser JM, Gould NR, et al. Connexin43 regulates osteoprotegerin expression via ERK1/2 -dependent recruitment of Sp1[J]. Biochem Biophys Res Commun, 2019, 509(3): 728-733. DOI: 10.1016/j.bbrc.2018.12.173.
|