[1] White W, Cove-Smith A. Kidney disease in the elderly[J]. Medicine, 2015, 43(8):489-492.
[2] Maw TT, Fried L. Chronic kidney disease in the elderly[J]. Clin Geriatr Med, 2013, 29(3):611-624.
[3] Campbell KH, O'Hare AM. Kidney disease in the elderly: update on recent literature[J]. Curr Opin Nephrol Hypertens, 2008, 17(3):298-303.
[4] Winearls CG, Glassock RJ. Classification of chronic kidney disease in the elderly: pitfalls and errors[J]. Nephron Clin Pract, 2011, 119(Suppl.1):c2-c4.
[5] Stevens LA, Levey AS. Chronic kidney disease in the elderly--how to assess risk[J]. N Engl J Med, 2005, 352(20):2122-2124.
[6] Piao XL, Jang MH, Cui J, et al. Lignans from the fruits of forsythia suspensa[J]. Bioorg Med Chem Lett, 2008, 18(6):1980-1984.
[7] Lu T, Piao XL, Zhang Q, et al. Protective effects of forsythia suspensa extract against oxidative stress induced by diquat in rats[J]. Food Chem Toxicol, 2010,48(2):764-770.
[8] Nishibe S, Okabe K, Tsukamoto H, et al. The structure of forsythiaside isolated from forsythia suspensa[J]. Chem Pharm Bull, 2008, 30(3):1048-1050.
[9] Jiao J, Gai QY, Fu YJ, et al. Application of white-rot fungi treated fructus forsythiae shell residue as a low-cost biosorbent to enrich forsythiaside and phillygenin[J]. Chem Eng Sci, 2012, 74(22):244-255.
[10] Iizuka T, Nagai M. Vasorelaxant effects of forsythiaside from the fruits of forsythia suspensa[J]. Yakugaku Zasshi, 2005, 125(2):219-224.
[11] Smith GL, Shlipak MG, Havranek EP, et al. Serum urea nitrogen, creatinine, and estimators of renal function: mortality in older patients with cardiovascular disease[J]. Arch Intern Med, 2006, 166(10):1134-1142.
[12] Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts[J]. Clin Chem, 1992, 38(10):1933-1953.
[13] Ruilope LM, van Veldhuisen DJ, Ritz E, et al. Renal function: the cinderella of cardiovascular risk profile[J]. J Am Coll Cardiol, 2001, 38(7):1782-1787.
[14]Macedo E. Blood urea nitrogen beyond estimation of renal function[J]. Crit Care Med, 2011, 39(2):405-406.
[15]Valentijn FA, Falke LL, Nguyen TQ, et al. Cellular senescence in the aging and diseased kidney[J]. J Cell Commun Signal, 2018, 12(1):69-82.
[16]Pan CW, Zhou GY, Chen WL, et al. Protective effect of forsythiaside a on lipopolysaccharide/d-galactosamine-induced liver injury[J]. Int Immunopharmacol, 2015, 26(1):80-85.
[17]Brentnall M, Rodriguez-Menocal L, DE Guevara RL, et al. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis[J]. BMC Cell Biol, 2013, 14(1):32-38.
[18]Mcilwain DR, Berger T, Mak TW. Caspase functions in cell death and disease[J]. Cold Spring Harb Perspect Biol, 2013, 5(4):a008656.
[19]Choudhary GS, Alharbi S, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis[J]. Methods Mol Biol, 2015, 1219(414):1-9.
[20]D'Mello SR, Kuan CY, Flavell RA, et al. Caspase-3 is required for apoptosis-associated DNA fragmentation but not for cell death in neurons deprived of potassium[J]. J Neurosci Res, 2015, 59(1):24-31.
[21]Huang C, Lin Y, Su H, et al. Forsythiaside protects against hydrogen peroxide-induced oxidative stress and apoptosis in pc12 cell[J]. Neurochem Res, 2015, 40(1):27-35.
[22]Shin HS, Park SY, Song HG, et al. The androgenic alopecia protective effects of forsythiaside-a and the molecular regulation in a mouse model[J]. Phytother Res, 2015, 29(6):870-876.
[23]Trachootham D, Lu W, Ogasawara MA, et al. Redox regulation of cell survival[J]. Antioxid Redox Signal, 2008, 10(8):1343-1374.
[24]Rahman K. Studies on free radicals, antioxidants, and co-factors[J]. Clin Interv Aging, 2007, 2(2):219-236.
[25]Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production[J]. Physiol Rev, 2008, 88(4):1243-1276.
[26]Lu T, Piao XL, Zhang Q, et al. Protective effects of forsythia suspensa extract against oxidative stress induced by diquat in rats[J]. Food Chem Toxicol, 2010, 48(2):764-770.
[27]周建, 沈瑞明, 郑跃芳, 等. 创伤性颅脑损伤患者il-1β、il-6、il-10水平变化及临床意义[J]. 医学分子生物学杂志, 2017, 14(5):287-290.
[28]Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer[J]. Cell, 2010, 140(6):883-899.
[29]Qian J, Ma X, Xun Y, et al. Protective effect of forsythiaside a on ova-induced asthma in mice[J]. Eur J Pharmacol, 2017, 812(1):250-255.
[30]Cheng L, Li F, Ma R, et al. Forsythiaside inhibits cigarette smoke-induced lung inflammation by activation of nrf2 and inhibition of nf-κb[J]. Int Immunopharmacol, 2015, 28(1):494-499.
[31]Mahmoud AM, Alexander MY, Tutar Y, et al. Oxidative stress in metabolic disorders and drug-induced injury: the potential role of nrf2 and ppars activators[J]. Oxid Med Cell Longev, 2017, 2017:2508909.
[32]曹娟, 郑伟, 朱柯斌, 等. Musashi-1、cox-2、nrf-2在子宫腺肌病中的表达及意义[J]. 医学分子生物学杂志, 2017, 14(6):337-341.
[33]Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine[J]. Annu Rev Genet, 2005, 39:359-407.
[34]Itoh K, Chiba T, Takahashi S, et al. An nrf2/small maf heterodimer mediates the induction of phase ii detoxifying enzyme genes through antioxidant response elements[J]. Biochem Biophys Res Commun, 1997, 236(2):313-322.
[35]Wang Y, Zhao H, Lin C, et al. Forsythiaside a exhibits anti-inflammatory effects in lps-stimulated bv2 microglia cells through activation of nrf2/ho-1 signaling pathway[J]. Neurochem Res, 2016, 41(4):659-665. |