目的 量化评估三步接骨法治疗Sanders Ⅱ型跟骨骨折效能指标,阐明其科学机制。 方法 利用健康成年男性踝关节CT数据,构建正常足踝模型与Sanders Ⅱ型跟骨骨折模型,在骨折模型上进行三步接骨法的力学加载,模拟拔伸牵引、提按顶复、端挤捏骨等手法,评估跟骨复位情况并求解不同手法作用下力学的变化。 结果 建立正常足部模型与Sanders Ⅱ A/B/C型跟骨骨折模型;三步接骨法加载复位后跟骨长、高、宽、Gissane's角及Bohler's角得到明显纠正;求解不同手法的力学趋势,发现拔伸牵引法能有效纠正重叠位移,提按顶复法侧重纠正前后侧移位,端挤捏骨法致力纠正内外侧移位。 结论 三步接骨法通过依次纠正骨折位移,能恢复跟骨解剖结构,有效治疗跟骨Sanders Ⅱ型损伤,具有有效性及科学性。
Abstract
Objective To explore the feasibility and scientificity of the three-step reduction method for treating Sanders type II calcaneal fracture, and to promote the optimization of the treatment plan for calcaneal fracture. Methods Using the CT data of healthy adult male ankle joints, normal ankle model and Sanders type II calcaneal fracture model were constructed, and mechanical loading of the three-step reduction method was performed on the fracture model, simulating techniques such as traction, lifting and pressing, and pinching and joining ends. The reduction of the calcaneus before and after reduction was evaluated and the mechanical changes under different techniques were solved. Results Normal foot model and Sanders type II A/B/C calcaneal fracture model were established. The calcaneal length, height, width, Gissane’s angle, and Bohler’s angle were significantly corrected after manual loading and reduction. By solving the mechanical trends of different techniques, it was found that traction effectively corrected overlapping displacement, pressing and pushing focused on correcting anterior-posterior displacement, and squeezing the bone ends aimed at correcting medial-lateral displacement. Conclusions The three-step reduction method can effectively treat Sanders type II calcaneal fracture by correcting the fracture displacement and restoring the anatomical structure of the calcaneus in sequence, confirming the effectiveness and scientificity of this technique.
关键词
跟骨骨折 /
  /
  /
Sanders Ⅱ型 /
  /
  /
三步接骨法 /
  /
  /
有限元分析 /
  /
  /
生物力学
Key words
Calcaneal fracture /
  /
  /
Sanders II /
  /
  /
Three-step reduction method /
  /
  /
Finite element analysis /
  /
  /
  /
Biomechanics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Cianni L, Vitiello R, Greco T, et al. Predictive factors of poor outcome in sanders type III and IV calcaneal fractures treated with an open reduction and internal fixation with plate: a medium-term follow-up[J]. J Clin Med, 2022, 11(19): 5660. DOI: 10.3390/jcm11195660.
[2] Eastwood DM, Gregg PJ, Atkins RM. Intra-articular fractures of the calcaneum. Part I: pathological anatomy and classification[J]. J Bone Joint Surg Br, 1993, 75(2): 183-188. DOI: 10.1302/0301-620X.75B2.8444934.
[3] Marouby S, Cellier N, Mares O, et al. Percutaneous arthroscopic calcaneal osteosynthesis for displaced intra-articular calcaneal fractures: systematic review and surgical technique[J]. Foot Ankle Surg, 2020, 26(5): 503-508. DOI: 10.1016/j.fas.2019.07.002.
[4] Guo C, Xu Y, Li C, et al. Comparing less invasive plate fixation versus screw fixation of displaced intra-articular calcaneus fracture via sinus tarsi approach[J]. Int Orthop, 2021, 45(9): 2231-2237. DOI: 10.1007/s00264-020-04867-5.
[5] 孙小辉, 刘传强, 孙鲁, 等. 中医手法整复治疗踝关节骨折研究进展[J]. 山东中医杂志, 2022, 41(10): 1131-1136. DOI: 10.16295/j.cnki.0257-358x.2022.10.019.
[6] Jiménez-Almonte JH, King JD, Luo TD, et al. Classifications in brief: sanders classification of intraarticular fractures of the calcaneus[J]. Clin Orthop Relat Res,2019, 477(2): 467-471. DOI: 10.1097/CORR.00000 00000000539.
[7] Rochelle DC, Herbert A, Ktistakis I, et al. Mechanical characterisation of the lateral collateral ligament complex of the ankle at realistic sprain-like strain rates[J]. J Mech Behav Biomed Mater, 2020, 102: 103473. DOI: 10.1016/j.jmbbm.2019.103473.
[8] Ramlee MH, Sulong MA, Garcia-Nieto E, et al. Biomechanical features of six design of the delta external fixator for treating Pilon fracture: a finite element study[J]. Med Biol Eng Comput, 2018, 56(10): 1925-1938. DOI: 10.1007/s11517-018-1830-3.
[9] Wang SP, Lai WY, Lin YY, et al. Biomechanical comparisons of different diagonal screw designs in a novel embedded calcaneal slide plate[J]. J Chin Med Assoc, 2021, 84(11): 1038-1047. DOI: 10.1097/JCMA.0000000000000625.
[10]Anderson DD, Goldsworthy JK, Li W, et al. Physical validation of a patient-specific contact finite element model of the ankle[J]. J Biomech, 2007,40(8): 1662-1669. DOI: 10.1016/j.jbiomech. 2007. 01.024.
[11]Bläsius FM, Stockem LE, Knobe M, et al. Predictors for wound healing complications and prolonged hospital stay in patients with isolated calcaneal fractures[J]. Eur J Trauma Emerg Surg, 2022, 48(4): 3157-3163. DOI: 10.1007/s00068-021-01863-1.
[12]Wang HC, Zhang YF, Ren C, et al. Biomechanical properties and clinical significance of cancellous bone in proximal femur: a review[J]. Injury, 2023, S0020-1383(23)00251-6. DOI: 10.1016/j.injury. 2023. 03. 010.
[13]刘广伟, 成永忠, 祝建飞, 等. 旋前-外旋型三踝骨折逆移位手法复位有限元分析[J]. 医用生物力学, 2018, 33(6): 523-528. DOI: 10.16156/j.1004-7220.2018.06.008.
[14]温海宝, 高景华, 李建国, 等. 基于足踝三维有限元模型的摇拔戳手法治疗外侧踝关节扭伤关节面力学分析[J]. 中医杂志, 2022, 63(21): 2066-2071. DOI: 10.13288/j.11-2166/r.2022.21.012.
[15]Delmon R, Vendeuvre T, Pries P, et al. Percutaneous balloon calcaneoplasty versus open reduction and internal fixation (ORIF) for intraarticular SANDERS 2B calcaneal fracture: comparison of primary stability using a finite element method[J]. Injury, 2023, S0020-1383(23)00272-3. DOI: 10.1016/j.injury.2023.03.019.
基金
2021年四川省科技厅中央引导地方科技发展资金面上项目(2021ZYD0078)