[1] |
Antoni S, Ferlay J, Soerjomataram I, et al. Bladder cancer incidence and mortality: a global overview and recent trends[J]. Eur Urol, 2017, 71(1): 96-108.
|
[2] |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-E386.
|
[3] |
Gao D, Lv AE, Li HP, et al. LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple myeloma[J]. J Cell Biochem, 2017, 118(10): 3341-3348.
|
[4] |
Ren S, Liu Y, Xu W, et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer[J]. J Urol, 2013, 190(6): 2278-2287.
|
[5] |
Zhang R, Xia Y, Wang Z, et al. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer[J]. Biochem Biophys Res Commun, 2017, 490(2): 406-414.
|
[6] |
Hu ZY, Wang XY, Guo WB, et al. Long non-coding RNA MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in colorectal cancer cells[J]. Oncotarget, 2016, 7(10): 11733-11743.
|
[7] |
Wu J, Weng Y, He F, et al. LncRNA MALAT-1 competitively regulates miR-124 to promote EMT and development of non-small-cell lung cancer[J]. Anticancer Drugs, 2018, 29(7): 628-636.
|
[8] |
Zhang X, He X, Liu Y, et al. MiR-101-3p inhibits the growth and metastasis of non-small cell lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1[J]. Biomedecine Pharmacother, 2017, 93: 1065-1073.
|
[9] |
Zhuo M, Yuan C, Han T, et al. A novel feedback loop between high MALAT-1 and low miR-200c-3p promotes cell migration and invasion in pancreatic ductal adenocarcinoma and is predictive of poor prognosis[J]. BMC Cancer, 2018, 18(1): 1032.
|
[10] |
Ying L, Chen Q, Wang Y, et al. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition[J]. Mol Biosyst, 2012, 8(9): 2289-2294.
|
[11] |
Tang D, Yang Z, Long F, et al. Inhibition of MALAT1 reduces tumor growth and metastasis and promotes drug sensitivity in colorectal cancer[J]. Cell Signal, 2019, 57: 21-28.
|
[12] |
Baraniskin A, Birkenkamp-demtroder K, Maghnouj A, et al. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL[J]. Carcinogenesis, 2012, 33(4): 732-739.
|
[13] |
Chung YH, Li SC, Kao YH, et al. MiR-30a-5p inhibits epithelial-to-mesenchymal transition and upregulates expression of tight junction protein claudin-5 in human upper tract urothelial carcinoma cells[J]. Int J Mol Sci, 2017, 18(8): E1826.
|
[14] |
Jiang X, Du L, Wang L, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer[J]. Int J Cancer, 2015, 136(4): 854-862.
|
[15] |
Pan Y, Tong S, Cui R, et al. Long non-coding MALAT1 functions as a competing endogenous RNA to regulate vimentin expression by sponging miR-30a-5p in hepatocellular carcinoma[J]. Cell Physiol Biochem, 2018, 50(1): 108-120.
|
[16] |
Shen H, Blijlevens M, Yang N, et al. Sox4 expression confers bladder cancer stem cell properties and predicts for poor patient outcome[J]. Int J Biol Sci, 2015, 11(12): 1363-1375.
|
[17] |
Gunes S, Yegin Z, Sullu Y, et al. SOX4 expression levels in urothelial bladder carcinoma[J]. Pathol Res Pract, 2011, 207(7): 423-427.
|
[18] |
Aaboe M, Birkenkamp-Demtroder K, Wiuf C, et al. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization[J]. Cancer Res, 2006, 66(7): 3434-3442.
|