The remnant circumferential cortex in pertrochanteric femoral fractures: CT image study and clinical implications

WEI Zhen, XIONG Wen-feng, ZHANG Shi-min

Chinese Journal of Clinical Anatomy ›› 2020, Vol. 38 ›› Issue (6) : 639-645.

Chinese Journal of Clinical Anatomy ›› 2020, Vol. 38 ›› Issue (6) : 639-645.

The remnant circumferential cortex in pertrochanteric femoral fractures: CT image study and clinical implications

  • WEI Zhen, XIONG Wen-feng, ZHANG Shi-min
Author information +
History +

Abstract

Objective To investigate the morphological features of circumferential proximal cortex in pertrochanteric fractures by CT-images,and providing structural basis and anatomical reference for the cortical support reduction in pertrochanteric fractures. Methods Eighty cases of AO/OTA 31-A1 and A2 pertrochanteric fractures were enrolled in this study. The CT scans of the cases were collected and the 3D-CT images were reconstructed by using the Mimics software. Fractures were reconstructed and simulated by 3D-CT. With the angle between the femoral shaft axis and the head-neck axis maintained at 130 degrees, the circumference of remnant circumferential cortex, width of its anterior part, lateral part, posterior part, and angle of the line between anterior and posterior broken-ends were measured. Results Twenty-one cases belong to type A1, the average circumferential cortex length was 88.7 mm; anterior, lateral and posterior circumferential cortex widths were 36.9 mm, 36.9 mm and 27.3 mm, respectively; and broken-ends line angle was 16.2°. 59 cases in type A2, the average circumferential cortex length was 60.0 mm; anterior, lateral and posterior circumferential cortex widths were 32.3 mm, 27.4 mm and 9.2 mm, respectively; and broken-ends line angle was 40.2°. The length of circumferential cortex in type A1 was significantly longer than that in A2 (P<0.01). On the whole, the posterior cortex had the largest variation, while anterior cortex was much more stable and showed the lowest variation (C.V were 75.5% and 20.0%). Conclusions There are significant differences between type A1 and A2 in circumferential cortical morphology of the proximal femur. The posterior cortex width is small and highly variable. While the anterior cortex width is much more longer and basically stable, which could be used as the main structure for the cortical support reduction.

Key words

Pertrochanteric fracture /  Circumferential proximal cortex; Anterior cortex; Posterior cortex; Cortex support reduction; CT measurement

Cite this article

Download Citations
WEI Zhen, XIONG Wen-feng, ZHANG Shi-min. The remnant circumferential cortex in pertrochanteric femoral fractures: CT image study and clinical implications[J]. Chinese Journal of Clinical Anatomy. 2020, 38(6): 639-645

References

[1]  Parker M J. Trochanteric hip fractures. Fixation failure commoner with femoral medialization, a comparison of 101 cases[J]. Acta Orthop Scand, 1996, 67(4): 329-332.
[2] Gotfried Y. The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures[J]. Clin Orthop Relat Res, 2004, 425: 82-86. 
[3]  Simpson AH, Varty K, Dodd CA. Sliding hip screws: modes of failure[J]. Injury, 1989, 20(4): 227-231. 
[4]  张世民, 胡孙君, 杜守超, 等. 股骨转子间骨折的稳定性重建概念演化与研究进展[J]. 中国修复重建外科杂志, 2019, 33(10): 1203-1209. 
[5] Chang SM, Zhang YQ, Ma Z, et al. Fracture reduction with positive medial cortical support: a key element in stability reconstruction for the unstable pertrochanteric hip fractures[J]. Arch Orthop Trauma Surg, 2015, 135(6): 811-818. 
[6] Fogagnolo F, Kfuri M, Paccola CA. Intramedullary fixation of pertrochanteric hip fractures with the short AO-ASIF proximal femoral nail[J]. Arch Orthop Trauma Surg, 2004, 124(1): 31-37. 
[7] Xiong WF, Zhang YQ, Chang SM, et al. Lesser trochanteric fragments in unstable pertrochanteric hip fractures: a morphological study using three-dimensional computed tomography (3-D CT) reconstruction[J]. Med Sci Monit, 2019, 25: 2049-2057. 
[8] Davis TR , Sher JL , Horsman A , et al. Intertrochanteric femoral fractures. Mechanical failure after internal fixation[J]. J Bone Joint Surg Br, 1990, 72(1): 26-31. 
[9] Sharma G, Singh R, Gn KK, et al. Which AO/OTA 31-A2 pertrochanteric fractures can be treated with a dynamic hip screw without developing a lateral wall fracture? A CT-based study[J]. Int Orthop, 2016, 40(5): 1009-1017. 
[10]张英琪, 张世民, 熊文峰, 等. 股骨近端外侧壁的骨折特征地图研究[J]. 中国临床解剖学杂志,2017, 35(2): 121-125. 
[11]Li JT, Tang SJ, Zhang H, et al. Clustering of morphological fracture lines for identifying intertrochanteric fracture classification with Hausdorff distance-based K-means approach[J]. Injury, 2019, 50(4): 939-949. 
[12]Bartoska R, Baca V, Kachlik D, et al. The correlation between muscles insertions and topography of break lines in pertrochanteric fractures: a comprehensive anatomical approach of complex proximal femur injuries[J]. Surg Radiol Anat, 2013, 35(10): 957-962. 
[13]Tsukada S, Okumura G, Matsueda M. Postoperative stability on lateral radiographs in the surgical treatment of pertrochanteric hip fractures[J]. Arch Orthop Trauma Surg, 2012, 132(6): 839-846. 
[14]Ito J, Takakubo Y, Sasaki K, et al. Prevention of excessive postoperative sliding of the short femoral nail in femoral trochanteric fractures[J]. Arch Orthop Trauma Surg, 2015, 135(5): 651-657. 
[15] 杜守超, 张世民, 张英琪, 等. 不稳定股骨转子间骨折前内侧皮质支撑复位的影像学研究[J]. 中国矫形外科杂志, 2018, 26(18): 1633-1638. 
[16]张世民, 张英琪,李清,等. 内侧皮质正性支撑复位对老年股骨粗隆间骨折内固定效果的影响[J]. 中国矫形外科杂志, 2014, 22(14): 1256-1261. 
[17]Sharma G, Gn KK, Khatri K, et al. Morphology of the posteromedial fragment in pertrochanteric fractures: A three-dimensional computed tomography analysis[J]. Injury, 2017;48(2):419-431.
[18]Chang SM, Zhang YQ, Du SC, et al. Anteromedial cortical support reduction in unstable pertrochanteric fractures: a comparison of intra-operative fluoroscopy and post-operative three dimensional computerised tomography reconstruction[J]. Int Orthop, 2018, 42(1): 183-189. 
[19]张世民,余斌. AO/OTA-2018版股骨转子间骨折分类的解读与讨论[J]. 中华创伤骨科杂志,2018, 20(7): 583-587. 
[20]Boopalan PR, Oh JK, Kim TY, et al. Incidence and radiologic outcome of intraoperative lateral wall fractures in OTA 31A1 and A2 fractures treated with cephalomedullary nailing[J]. J Orthop Trauma, 2012, 26(11): 638-642. 
[21]Palm H, Jacobsen S, Sonne-Holm S, et al. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation[J]. J Bone Joint Surg Am, 2007, 89(3): 470-475. 
[22]Cho JW, Kent WT, Yoon YC, et al. Fracture morphology of AO/OTA 31-A trochanteric fractures: A 3D CT study with an emphasis on coronal fragments[J]. Injury, 2017, 48(2): 277-284. 
[23]Ma Z, Yao XZ, Chang SM. The classification of intertrochanteric fractures based on the integrity of lateral femoral wall: Letter to the editor, Fracture morphology of AO/OTA 31-A trochanteric fractures: A 3D CT study with an emphasis on coronal fragments[J]. Injury, 2017, 48(10): 2367-2368. 
[24]王郑浩,李开南,兰海. 基于三维CT的股骨转子间骨折后内侧壁骨折地图研究[J].中华创伤骨科杂志, 2019, 21(9):745-751. 
[25]Hsu CE, Shih CM, Wang CC, et al. Lateral femoral wall thickness. A reliable predictor of post-operative lateral wall fracture in intertrochanteric fractures[J]. Bone Joint J, 2013, 95-B (8): 1134-1138. 
[26]张世民,马卓,杜守超,等. 股骨近端外侧壁的解剖学研究及其对转子间骨折内固定的意义[J]. 中国临床解剖学杂志, 2016, 34(1): 39-42. 
[27]Sun LL, Li Q, Chang SM. The thickness of proximal lateral femoral wall[J]. Injury, 2016, 47(3): 784-785. 
[28]Sharma G, Gn KK, Khatri K, et al. Morphology of the posteromedial fragment in pertrochanteric fractures: a three-dimensional computed tomography analysis[J]. Injury, 2017, 48(2):419-431. 

Accesses

Citation

Detail

Sections
Recommended

/