Characteristics of miRNA in fibrosis diseases
SHEN Kuan-Hong, HUANG Dong
Chinese Journal of Clinical Anatomy ›› 2013, Vol. 31 ›› Issue (6) : 724-726.
Characteristics of miRNA in fibrosis diseases
[1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
[J]. Cell,1993,75(5):843-854.
[2] Chen CZ. MicroRNAs as oncogenes and tumor suppressors
[J]. N Engl J Med, 2005, 353(17):1768-1771.
[3] Bartel DP. MicroRNAs: target recognition and regulatory functions
[J]. Cell,2009,136(2):215-233.
[4] van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA
[J]. Science,2007,316(5824):575-579.
[5] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
[J]. Nature,2008,456(7224):980-984.
[6] Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
[J]. Circ Res,2009,104(2):170-178.
[7] Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac
myocytes
[J]. Circ Res, 2009, 104(7):879-886.
[8] van Rooij E, Marshall W S, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense
[J]. Circ Res, 2008, 103(9):919-928.
[9] Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis
[J]. Am J Respir Crit Care Med, 2010,182(2):220-229.
[10] Broekelmann TJ, Limper AH, Colby TV, et al. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis
[J].
Proc Natl Acad Sci U S A,1991, 88(15):6642-6646.
[11] Xie T, Liang J, Guo R, et al. Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation
[J]. Physiol
Genomics, 2011, 43(9):479-487.
[12] Oglesby IK, Bray IM, Chotirmall SH, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression
[J]. J Immunol, 2010,184
(4):1702-1709.
[13] Pottier N, Maurin T, Chevalier B, et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal
interactions
[J]. PLoS One, 2009, 4(8):e6718.
[14] Nana-Sinkam SP, Hunter MG, Nuovo GJ, et al. Integrating the MicroRNome into the study of lung disease
[J]. Am J Respir Crit Care Med, 2009,179(1):4-10.
[15] Guo CJ, Pan Q, Cheng T, et al. Changes in microRNAs associated with hepatic stellate cell activation status identify signaling pathways
[J]. FEBS J, 2009, 276(18):5163-5176.
[16] Guo CJ, Pan Q, Jiang B, et al. Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells
[J]. Apoptosis, 2009,14
(11):1331-1340.
[17] Venugopal SK, Jiang J, Kim TH, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased
stellate cell activation
[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(1):101-106.
[18] Chang Y, Jiang HJ, Sun XM, et al. Hepatic stellate cell-specific gene silencing induced by an artificial microRNA for antifibrosis in vitro
[J]. Dig Dis Sci,2010,55(3):642-
653.
[19] Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy
[J]. FASEB J,2008,22(12):4126-4135.
[20] van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
[J]. Proc Natl Acad Sci
USA, 2008, 105(35):13027-13032.
[21] Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors
[J].
Proc Natl Acad Sci USA, 2007,104(9):3432~3437.
[22] Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
[J]. Genes
Dev, 2008, 22(7):894-907.
[23] Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
[J]. Nat Cell Biol, 2008,10
(5):593-601.
[24] Paterson EL, Kolesnikoff N, Gregory PA, et al. The microRNA-200 family regulates epithelial to mesenchymal transition
[J]. ScientificWorld Journal,2008,8:901-904.
[25] Cano A, Nieto MA. Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition
[J]. Trends Cell Biol, 2008, 18(8):357-359.
[26] Gu J, Iyer VR. PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli
[J]. Genome Biol, 2006, 7(5):R42.
[27] 宁璞,刘德伍,毛远桂,等. 增生性瘢痕与正常皮肤微小RNA的差异表达谱分析
[J]. 中华医学杂志,2012,92(10):692-693.
[28] 王琰玲,王子露,杨迷芳,等. 微小RNA-29b体外抑制皮肤成纤维细胞胶原蛋白1的研究
[J]. 中华实验外科杂志, 2011, 28(4):540-542.
/
〈 |
|
〉 |