The finite element analysis of Aerofoil shape memory alloy fixation instrument for surgically treating spondylolysis

SHU Li-Xin, WANG Jian, CAO Yan-Lin, FAN Wang-Ju, XU Guo-Ji, ZHANG Xi-Bing, XIE Wen-Meng

Chinese Journal of Clinical Anatomy ›› 2012, Vol. 30 ›› Issue (3) : 333-336.

Chinese Journal of Clinical Anatomy ›› 2012, Vol. 30 ›› Issue (3) : 333-336.

The finite element analysis of Aerofoil shape memory alloy fixation instrument for surgically treating spondylolysis

  • ZHU Li-xin1, WANG Jian1, CAO Yan-lin1, FAN Wang-ju1, YU Guo-ji2, ZHANG Xi-bing1, YE Wen-ming1
Author information +
History +

Abstract

Objective To establish the three-dimensional finite element model (FEM) with the bilateral pars defect and reconstruct by AEROFOIL fixation. Methods According to spiral CT scan images of 0.625 mm thickness,finite element model of lumbosacral vertebrae was established using Mimics10.01, Geomagic studio12.0, HyperMesh 10.0 and Abaqus10.1 software. Moreover, it's validity had been verified and then imported the AEROFOIL fixation. The reconstructed model was analyzed under 500N pressure loading on the upper surface of L1, and 7.5Nm torque loading for simulating axial compression and flexion, extension, lateral bending and rotation. The Von mises stress of fixation were recorded and analyzed. Results It showed that high stress concentrated at the bottom part of the swings, especially at the junction of the swings and the U-shape base. Extension and axial rotation motion resulted in breakage of the AEROFOIL fixation. Conclusions Improving Nitinol material quality and process standards and suitably prolonging the need for external bracing are necessary for reducing the higher risk of fracture on fixation devices.

Key words

Lumbosacral spine / Spondylolysis / Fixation devices / Finite element analysis

Cite this article

Download Citations
SHU Li-Xin, WANG Jian, CAO Yan-Lin, FAN Wang-Ju, XU Guo-Ji, ZHANG Xi-Bing, XIE Wen-Meng. The finite element analysis of Aerofoil shape memory alloy fixation instrument for surgically treating spondylolysis[J]. Chinese Journal of Clinical Anatomy. 2012, 30(3): 333-336

References


[1]  Micheli LJ, Wood R. Back pain in young athletes: signi?cant differences from adults in causes and patterns
[J]. Adolesc Med, 1995, 14(9): 15-18.

[2] Buck JE, Direct repair of the defect in spondylolisthesis.Preliminary report
[J].J Bone Joint Surg Br, 1970, 52(3):432-437.

[3] Nicol RO, Scott JHS Lytic spondylolysis repair by wiring
[J]. Spine,1986, 11(10):1027-1030.

[4] Hefti F, Seelig W, Morscher E. Repair of lumbar spondylolysis with a hook-screw
[J]. Spine, 1986, 11(10): 1027-1030.

[5]  Antonius Rohlmann, Hadi Nabil Boustani, Georg Bergmann, et al. Effects of nonlinearity in the material used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.
[J]. Journal of Biomechanics, 2010, 43(3): 2963–2969.

[6]  张西兵,朱立新,王健, 等. 腰椎峡部裂机翼型记忆合金节段内固定器研制的解剖学基础
[J]. 中国临床解剖杂志, 2011, 29(4): 407-410.

[7]  Tsuang YH, Chiang YF, Hung CY, et al. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-a finite element study
[J]. Med Eng Phys, 2008, 31(5): 565-570.

[8] Rohlmann A, Zander T,Rao M, et al. Realistic loading conditions for upper body bending
[J]. J Biomech, 2009, 42(7): 884-890.

[9] White AA 3rd, Panjabi MM. The basic kinematics of the human spine. A review of past and current knowledge
[J]. Spine,1978, 3(1):12-20.

[10]张建发,刘南礼,朱表安,等. 腰椎三维运动范围的实验研究
[J]. 深圳医学, 1997, 10(3): 1-2.

[11] Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis
[J]. Med Eng Phys, 2008, 30(10): 1287-1304.  


[12] Long M, Rack HJ. Titanium alloys in total joint replacement a material science perspective
[J]. Biomaterials, 1998, 19(18): 1621-1639.

[13] Miyazaki S, Ohmi Y, Otsuka K, et al. Characteristics of deformation and transformation pseudoelastieity in Ti-Ni alloys
[J]. De Pysique, 1982, 15(C4): 255-260.

[14] Buehler WJk, Gilfrich JV, Wiley RC. Effect of low temperature Phase changes on the mechanical Properties of alloys near composition TiNi
[J]. Journal of Applied Physics, 1963, 34:1475-1477.

[15] 卢世壁,王继芳,郭锦芳,等. 镍钛形状记忆合金在脊柱侧弯症矫形的应用
[J]. 中华外科杂志, 1986, 24: 129.

[16] 张春才,刘植珊,高建章,等. 髌骨内固定形状记忆整复器的设计与临床应用
[J]. 中华外科杂志, 1989, 27(11):692-695.

[17] 张辉,靳安民,张美超. 腰椎峡部裂记忆合金节段内固定器的有限元分析
[J]. 第一军医大学学报, 2002, 22(12): 1128-1130.

[18] Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine
[J]. Med Eng Phys, 2001, 23(7):483-491.

[19] Castellvi AE, Huang H, Vestgaarden T, et al. Stress reduction in adjacent level discs via dynamic instrumentation: a finite element analysis
[J]. SAS Journal, 2007, 25(1):74-81.

[20] Chosa E,Totoribe K,Tajima N. A biomechanical study of lumbar spondylolysis based on a three- dimensional finite element method
[J]. Orthopaedic Research, 2004, 22(1): 158-163.

[21]Kim K, Lee SK, Kim YH. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis
[J]. Proc Inst Mech Eng H, 2010 ,224(10):1165-1174.

[22]Schmidt H, Shirazi-Adl A, Galbusera F, et al. Response analysis of the lumbar spine during regular daily activities--a finite element analysis
[J]. Biomechanics, 2010, 43(10):1849-1856.

Accesses

Citation

Detail

Sections
Recommended

/