The establishment and use of thoracolumbar fracture model
WANG Hua-Jun, LI Yi-Kai, CHEN Chao
Chinese Journal of Clinical Anatomy ›› 2011, Vol. 29 ›› Issue (1) : 112-114.
The establishment and use of thoracolumbar fracture model
[1] Buttermann GR, Freeman AL, Beaubien BP. In vitro biomechanics of an expandable vertebral body replacement with self-adjusting end plates
[J]. Spine J, 2010,10(11):1024-1031.
[2] Cardenas RJ, Javalkar V, Patil S, et al.Comparison of allograft bone and titanium cages for vertebral body replacement in the thoracolumbar spine: a biomechanical study
[J]. Neurosurgery, 2010, 66(6 Suppl Operative):314-318.
[3] Nouda S, Tomita S, Kin A, et al. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement
[J]. Spine, 2009, 34(24): 2613-2618.
[4] Wilke HJ, Krischak S, Claes LE. Formalin fixation strongly influences biomechanical properties of the spine
[J]. J Biomech, 1996, 29(12):1629-1631.
[5] Kumar N, Kukreti S, Ishaque M, et al. Functional anatomy of the deer spine: an appropriate biomechanical model for the human spine
[J]. Anal Rec, 2002, 266(2):108-117.
[6] Panjabi MM, Kifune M, Liu W, et al. Graded thoracolumbar spinal injuries: development of multidirectional instability
[J]. Eur Spine J,1998, 7(4): 332-339.
[7] Kettler A, Liakos L, Haegele B, et al. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests
[J]? Eur Spine J, 2007, 16(12):2186-2192.
[8] Tezeren G, Gumus C, Bulut O, et al. Anterior versus modified combined instrumentation for burst fractures of the thoracolumbar spine: a biomechanical study in calves
[J]. J Orthop Surg (Hong Kong), 2008, 16(3):281-284.
[9] Sheng SR, Wang XY, Xu HZ, et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review
[J]. Eur Spine J, 2010, 19(1):46-56.
[10]Hongo M, Ilharreborde B, Gay RE, et al. Biomechanical evaluation of a new fixation device for the thoracic spine
[J].Eur Spine J, 2009, 18(8):1213-1219.
[11]Buckley JM, Kuo CC, Cheng LC, et al. Relative strength of thoracic vertebrae in axial compression versus flexion
[J]. Spine J, 2009, 9(6):478-485.
[12] Reinhold M, Schmoelz W, Canto F, et al. A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine
[J]. Arch Orthop Trauma Surg, 2009,129(10):1375-1382.
[13] Schmoelz W, Onder U, Martin A, et al. Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment
[J]. Eur Spine J, 2009, 18(10):1478-1485.
[14] Sun E, Alkalay R, Vader D, et al. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis a biomechanical analysis
[J]. J Spinal Disord Tech, 2009, 22(4):270-277.
[15] Wang XY, Dai LY, Xu HZ, et al. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: An in vitro study
[J]. J Clin Neurosci, 2008, 15(3):286–290.
[16] Sietsma MS, Hosman AJ, Verdonschot NJ, et al. Biomechanical evaluation of the vertebral jack tool and the inflatable bone tamp for reduction of osteoporotic spine fractures
[J]. Spine, 2009, 34 (18):640-644.
[17] Andy L, Terence E, Marc A, et al. The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness
[J]. Spine,2009, 34(5):441-446.
[18] Kasai Y, Inaba T, Kato T, et al. Biomechanical study of the lumbar spine using a unilateral pedicle screw fixation system
[J]. J Clin Neurosci,2010, 17(3): 364-367.
[19] Crawford NR, Dofan S, Yüksel KZ, et al. In vitro biomechanical analysis of a new lumbar low-profile locking screw-plate construct versus a standard top-loading cantilevered pedicle screw-rod construct: technical report
[J]. Neurosurgery, 2010, 66(2):404-406.
[20] Schreiber U, Bence T, Grupp T, et al. Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation
[J]. Eur Spine J, 2005, 14(2):197-204.
[21] Frank L, Jenni M, Zheng X, et al. Biomechanical comparison of three fixation techniques for unstable thoracolumbar burst fractures
[J]. J Neurosurg Spine, 2008, 8(4):341-346.
[22] Wang XY, Dai LY, Xu HZ, et al. The load-sharing classification of thoracolumbar fractures
[J]. Spine, 2007, 32(11):1214-1219.
[23] Panjabi MM, Hoffman H, Kato Y, et al. Superiority of incremental trauma approach in experimental burst fracture studies
[J]. Clin Biomech, 2000, 15(2):73-78.
[24] Patricia M, Brian P, Glenn R, et al. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model
[J]. J Spinal Disord Tech, 2008, 21(3):216-224.
[25] Luo J, Daines L, Charalambous A, et al. Vertebroplasty only small cement volumes are required to normalize stress distributions on the vertebral bodies
[J]. Spine, 2009, 34(26):2865-2873.
[26] Rüger M, Schmoelz W. Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro
[J]. Spine, 2009,34(24):2619-2625.
[27] Michael N, Susan M, Frank M, et al. Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture
[J]. Eur Spine J, 2008, 17(11):1522-1530.
[28] Moon SM, Ingalhalikar A, Highsmith JM, et al. Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model
[J]. Spine J, 2009, 9(4):330-335.
[29] Mahar A, Kim C, Wedemeyer M, et al. Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture
[J]. Spine, 2007, 32(14):1503-1507.
/
〈 |
|
〉 |