The methods and significance of stress-strain snalysis on cervical spine cadaveric specimen by noncontact optical 3D strain measuring system

Lin Fangzheng, Li Jing, Li Yongjin, Zhan Jiheng, Ping Ruiyue, Liang Dongzhu, Feng Minshan, Gao Zibo, Lin Dingkun, Qi Ji

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (6) : 697-702.

PDF(3453 KB)
PDF(3453 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (6) : 697-702. DOI: 10.13418/j.issn.1001-165x.2025.6.12

The methods and significance of stress-strain snalysis on cervical spine cadaveric specimen by noncontact optical 3D strain measuring system

  • Lin Fangzheng, Li Jing, Li Yongjin, Zhan Jiheng, Ping Ruiyue, Liang Dongzhu, Feng Minshan, Gao Zibo, Lin Dingkun, Qi Ji
Author information +
History +

Abstract

Objective    To introduce a kind of method exploring the stress-strain relationship on cervical cadaveric specimen by optical non-contact measurement system, and to provide reference for related biomechanical tests.   Methods    Cervical specimen was selected as subject. Before the test, anatomical exposure, embedding, and spraying were performed in order. The real strain under specific load was analyzed by the Aramis non-contact measurement system.   Results   Quantitative three-dimensional strain analysis demonstrated a statistically significant increase (P<0.05) in the number of strain points on the lateral surface of the cervical specimens (5397.25±723.76 points) compared to the conventional method. A similar increasing trend was observed on the anterior and posterior surfaces, although the difference did not reach statistical significance (P>0.05). The three-dimensional surface renderings of key cervical structures, including the vertebral body, intervertebral disc, intervertebral foramen (external opening), and facet joints, were clear and distinct, enabling comprehensive multi-dimensional strain analysis through angle, distance, and strain calculations performed by the system.   Conclusions    By the above method, the local and subtle strain, structure deformity, and kinetics of the cervical spine may be analyzed by optical non-contact measurement system easily, which is helpful for the related biomechanical tests.

Key words

Cervical vertebra specimen /   /   / Noncontact optical 3D strain measuring system /   /   / Digital image correlation /   /   / Biomechanics /   /   / Experimental method

Cite this article

Download Citations
Lin Fangzheng, Li Jing, Li Yongjin, Zhan Jiheng, Ping Ruiyue, Liang Dongzhu, Feng Minshan, Gao Zibo, Lin Dingkun, Qi Ji. The methods and significance of stress-strain snalysis on cervical spine cadaveric specimen by noncontact optical 3D strain measuring system[J]. Chinese Journal of Clinical Anatomy. 2025, 43(6): 697-702 https://doi.org/10.13418/j.issn.1001-165x.2025.6.12

References

[1]   欧阳钧,  钱蕾,  孙培栋. 脊柱生物力学研究的回顾与展望 [J].  医用生物力学, 2021, 36(2): 169-176. DOI:10.16156/j.1004-7220.2021.02. 001.
      Ouyang J, Qian L, Sun PD. Retrospect and prospect on researches of spine biomechanics [J]. Journal of Medical Biomechanics,2021,36(2):169-176. DOI:10.16156/j.1004-7220.2021.02.001.
[2] Costi JJ, Ledet EH, O'connell GD. Spine biomechanical testing methodologies: The controversy of consensus vs scientific evidence [J]. JOR Spine, 2021, 4(1): e1138. DOI:10.1002/jsp2.1138.
[3]  Naoum S, Vasiliadis AV, Kouterimpas C, et al. Finite element method for the evaluation of the human spine: a literature overview [J]. J Funct Biomater, 2021, 12(3):43. DOI:10.3390/jfb12030043.
[4]  Grassi L, Isaksson H. Extracting accurate strain measurements in bone mechanics: A critical review of current methods [J]. J Mech Behav Biomed Mater, 2015, 50: 43-54. DOI:10.1016/j.jmbbm.2015.06.006.
[5]  Yoon S, Jung HJ, Knowles JC, et al. Digital image correlation in dental materials and related research: A review [J]. Dent Mater, 2021, 37(5): 758-771. DOI:10.1016/j.dental.2021.02.024.
[6]  Cristofolini L, Brandolini N, Danesi V, et al. Strain distribution in the lumbar vertebrae under different loading configurations [J]. Spine J, 2013, 13(10): 1281-1292. DOI:10.1016/j.spinee.2013.06.014.
[7]  Danesi V, Erani P, Brandolini N, et al. Effect of the in vitro boundary conditions on the surface strain experienced by the vertebral body in the elastic regime [J]. J Biomech Eng, 2016, 138(10). DOI:10.1115/1.4034383.
[8] Nicola B, Luca C, Marco V. Experimental methods for the biomechanical investigation of the human spine: a review [J]. Journal of Mechanics in Medicine and Biology, 2014. DOI:10.1142/S0219519414300026.
[9]  Bay BK. Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone [J]. J Orthop Res, 1995, 13(2): 258-267. DOI:10.1002/jor.1100130214
[10]Lu H, Cary PD. Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient [J]. Experimental Mechanics, 2000, 40(4):393-400.DOI:10.1007/BF02326485.
[11]Poissant J, Barthelat F. A novel "subset splitting" procedure for digital image correlation on discontinuous displacement fields [J]. Experimental Mechanics, 2010, 50(3): 353-364. DOI:10.1007/s11340-009-9220-2.
[12]Tang T, Ebacher V, Cripton P, et al. Shear deformation and fracture of human cortical bone [J]. Bone, 2015, 71:25-35. DOI:10.1016/j.bone. 2014.10.001.
[13]Li J, Li Y, Ping R, et al. Biomechanical analysis of sacroiliac joint motion following oblique-pulling manipulation with or without pubic symphysis injury [J]. Front Bioeng Biotechnol, 2022, 10: 960090. DOI:10.3389/fbioe.2022.960090.
[14]Xu D, Wang Y, Jiang C, et al. Strain distribution in the anterior inferior tibiofibular ligament, posterior inferior tibiofibular ligament, and interosseous membrane using digital image correlation [J]. Foot Ankle Int, 2018, 39(5): 618-628. DOI: 10.1177/1071100717753160.
[15]Carriero A, Abela L, Pitsillides AA, Shefelbine SJ. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model[J]. J Biomech, 2014,47(10):2490-2497. DOI:10.1016/j.jbiomech. 2014.03.035.
[16]王飞, 张军, 卫杰, 等.模拟腰椎关节松动手法及冲击手法下椎间盘应变的比较[J].中国中医骨伤科杂志, 2019, 27(10):1-4, 9. DOI:CNKI:SUN:ZGZG.0.2019-10-002.
       Wang F, Zhang J, Wei J, et al. Comparison of Human Lumbar Disc Strain during Simulated Spinal Manipulation versus Spinal Mobilization [J]. Chinese Journal of Traditional Medical Traumatology & Orthopedics, 2019, 27(10):1-4, 9. DOI:CNKI:SUN:ZGZG.0.2019-10-002.
[17]Freddi A, Olmi G, Cristofolini L. Experimental Stress Analysis for Materials and Structures[M]. Springer International Publishing, 2015. DOI:10.1007/978-3-319-06086-6.
[18]Schreier H, Orteu JJ, Sutton MA. Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts, Theory and Applications [M]. New York: Springer Science, 2009. DOI:10.1007/978-0-387-78747-3.
[19]Pan B. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals [J]. Measurement Science & Technology, 2018, 29(8):082001. DOI:10.1088/1361-6501/aac55b.
PDF(3453 KB)

Accesses

Citation

Detail

Sections
Recommended

/