Radiographic factor analysis of catheter malposition during totally implantable venous access port placement via the axillary vein

Chen Hao, Chen Lu, Zhang Yin

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (6) : 640-644.

PDF(1712 KB)
PDF(1712 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (6) : 640-644. DOI: 10.13418/j.issn.1001-165x.2025.6.03

Radiographic factor analysis of catheter malposition during totally implantable venous access port placement via the axillary vein

  • Chen Hao1, Chen Lu2*, Zhang Yin1*
Author information +
History +

Abstract

Objective    To investigate the incidence of catheter tip malposition during totally implantable venous access port (TIVAP) implantation via right axillary vein and analyze the correlation between preoperative magnetic resonance imaging (MRI)-measured vascular anatomical parameters and malposition, thereby providing evidence for preoperative risk assessment and precise intraoperative catheter placement.   Methods   165 female breast cancer patients who underwent right axillary vein TIVAP implantation at the Department of Breast Surgery, Nanjing University Medical School Affiliated Drum Tower Hospital from May 2018 to December 2019 were enrolled in this retrospective study. Intracavitary electrocardiogram monitoring with P-wave localization was used to position the catheter tip in the operation. Patients were divided into a malposition group and a control group based on catheter malposition status.  The diameters of the subclavian vein (A), internal jugular vein (B), and brachiocephalic vein (C), as well as subclavian/internal jugular vein angle (α angle) and subclavian/brachiocephalic vein angle (β angle) were measured preoperatively by MRI. Differences in imaging parameters between the two groups were compared, and their correlation with catheter malposition was analyzed.   Results   TIVAP implantation success rate was 100% (165/165), with an intraoperative catheter tip malposition rate of 14.5% (24/165), all occurring in ipsilateral internal jugular vein. Malposition group exhibited significantly larger internal jugular vein diameters (12.31±1.60) mm and α angles (100.8±7.7)° compared to control group (10.91±1.63) mm and (91.67±4.12)°, with statistically significant differences (P<0.05). There was no significant difference in parameters A, C, or β angle between two groups (P>0.05).    Conclusions   During the implantation of TIVAP via right axillary vein, the increased diameter of internal jugular vein and the widened angle between subclavian and internal jugular veins constitute significant risk factors for catheter tip malposition. Preoperative MRI-based quantitative measurements of venous anatomy can provide predictive guidance for intraoperative catheter trajectory, facilitating the identification of high-risk individuals for catheter malposition and enabling personalized catheterization strategies to enhance procedural safety and positioning accuracy.

Key words

Totally implantable venous access port;  /   / Catheter malposition;  /   / Axillary vein;  /  Magnetic resonance imaging;  /   / Anatomical parameters

Cite this article

Download Citations
Chen Hao, Chen Lu, Zhang Yin. Radiographic factor analysis of catheter malposition during totally implantable venous access port placement via the axillary vein[J]. Chinese Journal of Clinical Anatomy. 2025, 43(6): 640-644 https://doi.org/10.13418/j.issn.1001-165x.2025.6.03

References

[1] Chen K, Beeraka NM, Gu Y, et al. Totally implantable venous access port systems: implant depth-based complications in breast cancer therapy-a comparative study[J]. Curr Pharm Des, 2021, 27(46): 4671-4676. DOI: 10.2174/1381612827666210901170522. 
[2]  Zhang P, Du J, Fan C, et al. Utility of totally implantable venous access ports in patients with breast cancer[J]. Breast J, 2020, 26(2): 333-334. DOI: 10.1111/tbj.13595. 
[3]  Hsu CCT, Kwan GNC, Evans-Barns H, et al. Venous cutdown versus the seldinger technique for placement of totally implantable venous access ports[J]. The Cochrane Database Syst Rev, 2016, 2016(8): CD008942. DOI: 10.1002/14651858.CD008942.pub2. 
[4]  Niederhuber JE, Ensminger W, Gyves JW, et al. Totally implanted venous and arterial access system to replace external catheters in cancer treatment[J]. Surgery, 1982, 92(4): 706-712.
[5]  Wang Y, Gao M, Bai G. Assessment of the feasibility and safety of totally implantable venous access port to collect blood samples in pediatric patients with acute lymphoblastic leukemia[J]. Pak J Med Sci, 2025, 41(6): 1644-1650. DOI: 10.12669/pjms.41.6.11978. 
[6]  Qiu XX, Jin GX, Zhang XB, et al. Expert consensus on the clinical application of totally implantable venous access devices in the upper arm (2022 edition)[J]. J Interv Med, 2023, 6(2): 53-58. DOI: 10.1016/j.jimed.2023.04.005. 
[7] Huang XM, Li X, Deng J, et al. Clinical applications and research progress of totally implantable venous access ports: a literature review[J]. Front Oncol, 2025,14:1519728. DOI: 10.3389/fonc.2024.1519728. 
[8] Selvakumar VPP, Acharya RP, Bhamri N. Pinch-off syndrome and fracture embolization: a preventable complication of TIVADS[J]. Indian J Surg Oncol, 2019, 10(1): 77-79. DOI: 10.1007/s13193-018-0817-8. 
[9]  Saugel B, Scheeren TWL, Teboul JL. Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice[J]. Crit Care , 2017, 21(1): 225. DOI: 10.1186/s13054-017-1814-y. 
[10]Chen K, Beeraka NM, Gu Y, et al. Totally implantable venous access port systems: implant depth-based complications in breast cancer therapy-a comparative study[J]. Curr Pharm Des, 2021, 27(46): 4671-4676. DOI: 10.2174/1381612827666210901170522. 
[11]Seo TS, Song MG, Kang EY, et al. A single-incision technique for placement of implantable venous access ports via the axillary vein[J]. J Vasc Interv Radiol, 2014,25(9): 1439-1446. DOI: 10.1016/j.jvir. 2013.12.571. 
[12]Tian K, Jiang J, Liu D, et al. The advantages and safety of ultrasound-guided infusion port implantation via axillary vein[J]. Ann Vasc Surg, 2025, 118: 161-168. DOI: 10.1016/j.avsg.2025.05.004. 
[13]Tabatabaie O, Kasumova GG, Eskander MF, et al. Totally implantable venous access devices: a review of complications and management strategies[J]. Am J Clin Oncol, 2017, 40(1): 94-105.DOI: 10.1097/COC.0000000000000361. 
[14]Liu W, Han Q, Li L, et al. Catheter malposition analysis of totally implantable venous access port in breast cancer patients[J]. Front Surg, 2022, 9: 1061826. DOI: 10.3389/fsurg.2022.1061826. 
[15]Fan Y, Ye X, Chen F,  et al. Risk factors for totally implantable access ports associated complications in breast cancer patients[J]. Cancer Control, 2025,32:10732748251336407. DOI: 10.1177/1073274825133 6407. 
[16]Huang XM, Li X, Deng J, et al. Clinical applications and research progress of totally implantable venous access ports: a literature review[J]. Front Oncol, 2025, 14:1519728. DOI: 10.3389/fonc.2024.1519728. 
[17]Li J, Chen W, Zhao W, et al. Surface measurement, intracardiac electrocardiogram and tracheal bifurcation techniques for locating the catheter tips of totally implantable venous access port[J]. Comput Methods Programs Biomed, 2020, 187: 105238. DOI: 10.1016/j.cmpb.2019.105238. 
[18]van den Brink H, Doubal FN, Duering M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879. 
[19]Wu LY, Gao C, Wu T, et al. Magnetic resonance imaging in the clinical evaluation of lung disorders: current status and future prospects[J]. J Magn Reson Imaging : JMRI, 2025,62(5):1260-1279. DOI: 10.1002/jmri.29802. 
[20]Su B, Palahnuk H, Harbaugh T, et al. Numerical study on the impact of central venous catheter placement on blood flow in the cavo-atrial junction[J]. Ann Biomed Eng, 2024,52(5):1378-1392. DOI: 10.1007/s10439-024-03463-7. 
[21]Hamzah KA, Kurmasha YH, Shweliya MA, et al. Internal vs. external jugular vein access for pediatric totally implantable venous ports: a systematic review and meta-analysis[J]. Pediatr Surg Int, 2025, 41(1): 180. DOI: 10.1007/s00383-025-06089-5. 
[22]Werba A, Hennes R, Schuh F, et al. Prospective, monocentric observational study on the clinical use and patient satisfaction of an implantable venous access port[J]. Langenbecks Arch Surg, 2025, 410(1): 84. DOI: 10.1007/s00423-025-03654-3. 
[23]Liu W, Han Q, Li L, et al. Catheter malposition analysis of totally implantable venous access port in breast cancer patients[J]. Front Surg, 2023, 9: 1061826. DOI: 10.3389/fsurg.2022.1061826. 
[24]Zhang L, Wu J. The utilization of guidewires for adjusting the intraoperative catheter malposition during the venous access port implantation: a retrospective study[J]. Medicine (Baltimore), 2024, 103(45): e40461. DOI: 10.1097/MD.0000000000040461. 
[25]Rewari V, Ramachandran R, Pande A. Compression with the ultrasound probe to prevent malposition of central venous catheter in the ipsilateral internal jugular vein during axillary vein cannulation[J]. J Clin Ultrasound, 2019, 47(2): 95-96. DOI: 10.1002/jcu.22666. 
[26]Zhang L, Wu J. The utilization of guidewires for adjusting the intraoperative catheter malposition during the venous access port implantation: a retrospective study[J]. Medicine (Baltimore), 2024, 103(45): e40461. DOI: 10.1097/MD.0000000000040461. 
[27]Liu Z, Zheng X, Zhen YY, et al. Efficacy, safety, and cost-effectiveness of intracavitary electrocardiography-guided catheter tip placement for totally implantable venous access port[J]. Ann Vasc Surg, 2022, 83: 168-175. DOI: 10.1016/j.avsg.2021.11.021. 
PDF(1712 KB)

Accesses

Citation

Detail

Sections
Recommended

/