Microscopic anatomy and DTI study of lateral white matter fiber tracts in the brain

Yang Shiyong, Li Chen, Di Guangfu, Sun Lean, Chen Guanggui, Jiang Xiaochun

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (6) : 627-633.

PDF(2814 KB)
PDF(2814 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (6) : 627-633. DOI: 10.13418/j.issn.1001-165x.2025.6.01

Microscopic anatomy and DTI study of lateral white matter fiber tracts in the brain

  • Yang Shiyong1, Li Chen2, Di Guangfu3, Sun Lean3, Chen Guanggui1, Jiang Xiaochun3*
Author information +
History +

Abstract

Objective    To clarify the anatomical structures and functional connectivity characteristics of the white matter fiber tracts in the lateral region of human brain by combining microscopic anatomical techniques and diffusion tensor imaging  (DTI).   Methods   10 formalin-fixed adult cadaver heads (20 cerebral hemispheres in total) were selected and By using Klingler fiber dissection technique, the white matter fiber tracts were dissected under 6~40× magnification was employed. A total of 16 healthy adult volunteers underwent cranial DTI examination. The anatomical structures of lateral white matter bundles were observed their trajectories and interrelationships were analyzed. Furthermore, in combination with DTI, I the anatomical architecture and interconnections among lateral brain white matter tracts were further clarified.   Results Multiple white matter fiber tracts were identified in the lateral portion of brain. After removing cortical gray matter, the most superficial and widely distributed structures revealed were short “U”-shaped association fibers. Dissecting these U-fibers exposed superficial long association tracts, including arcuate fasciculus, superior longitudinal fasciculus (SLF) II and III, and frontal aslant tract. Further dissection uncovered middle longitudinal fasciculus and inferior longitudinal fasciculus. Removing insular cortex in layers successively exposed the outermost capsule, claustrum, external capsule (including uncinate fasciculus and inferior fronto-occipital fasciculus), putamen, and globus pallidus, finally reaching internal capsule. The anatomical arrangement of each fiber tract was essentially stable. DTI data further verified these structural relationships. Conclusions   The combined application of microscopic anatomical methods and DTI research allows for a clearer understanding of the orientations and interrelationships of lateral white matter fiber tracts in brain. These findings provide theoretical support for clinical neurosurgical planning and offer an important foundation for investigations into brain function.

Key words

Lateral hemisphere;  /   / White matter fiber tracts;  /   / Microscopic anatomy;  /   / DTI

Cite this article

Download Citations
Yang Shiyong, Li Chen, Di Guangfu, Sun Lean, Chen Guanggui, Jiang Xiaochun. Microscopic anatomy and DTI study of lateral white matter fiber tracts in the brain[J]. Chinese Journal of Clinical Anatomy. 2025, 43(6): 627-633 https://doi.org/10.13418/j.issn.1001-165x.2025.6.01

References

[1]  李陈, 狄广福, 李强, 等. 弓状束及上纵束的显微解剖学与功能磁共振研究[J]. 中华外科杂志, 2023, 61(11):1018-1023. DOI:10.3760/cma.j.cn112139-20230322-00120. 
       Li C, Di GF, Li Q, et al. Microanatomy and functional MRI study of arcuate fasciculus and superior longitudinal fasciculus[J]. Chinese Journal of Suegery, 2023, 61(11):1020-1025. DOI: 10.3760/cma.j.cn112139-20230322-00120. 
[2]  Yagmurlu K, Middlebrooks EH, Tanriover N,Rhoton AL, Jr. Fiber tracts of the dorsal language stream in the human brain[J]. J Neurosurg, 2016, 124(5):1396-405. DOI:10.3171/2015.5.Jns15455.
[3]  Yagmurlu K, Vlasak AL, Rhoton AL, Jr. Three-dimensional topographic fiber tract anatomy of the cerebrum[J]. Neurosurgery, 2015, 11 Suppl 2:274-305. DOI:10.1227/neu.0000000000000704.
[4] Catani M, Dell'acqua F, Bizzi A, et al. Beyond cortical localization in clinico-anatomical correlation [J]. Cortex, 2012, 48(10):1262-1287. DOI:10.1016/j.cortex.2012.07.001.
[5]  De Benedictis A, Duffau H, Paradiso B, et al. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective [J]. J Anat, 2014, 225(2):132-151. DOI:10.1111/joa.12204.
[6] Zemmoura I, Blanchard E, Raynal PI, et al. How Klingler's dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter [J]. Brain Struct Funct, 2016, 221(5):2477-2486. DOI:10.1007/s00429-015-1050-7.
[7]  Türe U, Yaşargil MG, Friedman AH, et al. Fiber dissection technique: lateral aspect of the brain[J]. Neurosurgery, 2000, 47(2):417-427. DOI:10.1097/00006123-200008000-00028.
[8] Fernández-Miranda JC, Wang Y, Pathak S, et al. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain [J]. Brain Struct Funct, 2015, 220(3):1665-1680. DOI:10.1007/s00429-014-0751-7.
[9] Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study [J]. Cereb Cortex, 2005, 15(6):854-869. DOI:10.1093/cercor/bhh186.
[10]Thiebaut de Schotten M, Dell'Acqua F, Forkel SJ, et al. A lateralized brain network for visuospatial attention [J]. Nat Neurosci, 2011, 14(10):1245-1246. DOI:10.1038/nn.2905.
[11]Glasser MF, Rilling JK. DTI tractography of the human brain's language pathways [J]. Cereb Cortex, 2008, 18(11):2471-2482. DOI:10.1093/cercor/bhn011.
[12]Bozkurt B, Yagmurlu K, Middlebrooks EH, et al. Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Humans [J]. World Neurosurg, 2016, 95:99-107. DOI:10.1016/j.wneu.2016.07.072.
[13]Duffau H, Gatignol P, Mandonnet E, et al. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations [J]. Brain,  2005, 128(Pt 4):797-810. DOI:10.1093/brain/awh423.
[14] Catani M, Jones DK, Donato R, et al. Occipito-temporal connections in the human brain [J]. Brain, 2003, 126(Pt 9):2093-2107. DOI:10.1093/brain/awg203.
[15] Mandonnet E, Duffau H. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces [J]. Front Syst Neurosci, 2014, 8:82. DOI:10.3389/fnsys.2014.00082.
[16]Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN. Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study [J]. Cereb Cortex, 2009, 19(4):777-785. DOI:10.1093/cercor/bhn124.
[17]Seltzer B, Pandya DN. Further observations on parieto-temporal connections in the rhesus monkey [J]. Exp Brain Res,1984, 55(2):301-312. DOI:10.1007/bf00237280.
[18]Makris N, Pandya DN. The extreme capsule in humans and rethinking of the language circuitry [J]. Brain Struct Funct, 2009, 213(3):343-358. DOI:10.1007/s00429-008-0199-8.
[19]Schmahmann JD, Pandya D. Fiber pathways of the brain. OUP USA; 2009.
[20]Dick AS, Bernal B, Tremblay P. The language connectome: new pathways, new concepts [J]. Neuroscientist. 2014, 20(5):453-467. DOI:10.1177/1073858413513502.
PDF(2814 KB)

Accesses

Citation

Detail

Sections
Recommended

/