Specific regulation of Th9 differentiation and its potential immunological applications of Xanthiazone

Qiu Yuhui, Gao Yuan, Wang Handuo

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (5) : 573-577.

PDF(3224 KB)
PDF(3224 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (5) : 573-577. DOI: 10.13418/j.issn.1001-165x.2025.5.11

Specific regulation of Th9 differentiation and its potential immunological applications of Xanthiazone

  • Qiu Yuhui, Gao Yuan, Wang Handuo*
Author information +
History +

Abstract

Objective   To investigate the effects of xanthiazone on T cell differentiation.   Methods Mouse T cells were sorted and cultured in vitro under conditions favoring differentiation into Th1, Th9, Th17, and Treg subsets. Xanthiazone was added to the cultures, and cytokine secretion and transcription factor expression were assessed by flow cytometry on the 3rd day. The pro-differentiation effects of xanthiazone on Th9 cells were further evaluated using a concentration gradient (10 nmol/L, 100 nmol/L, 200 nmol/L, 500 nmol/L, 1 μmol/L).   Results   Compared to the control group, xanthiazone selectively promoted Th9 differentiation without affecting Th1, Th17, and Treg differentiation. Furthermore, the concentration-dependent effects of xanthiazone on Th9 differentiation revealed that concentrations below 200 nM enhanced Th9 differentiation in a gradient-dependent manner. However, concentrations above 200 nM inhibited IL-9 secretion.  Conclusions  Higher concentrations of xanthiazone may suppress T cell activity, thereby antagonizing its pro-differentiation effects on Th9 cells.

Key words

Xanthiazone /   /   / Th9 /   /   / T cell differentiation

Cite this article

Download Citations
Qiu Yuhui, Gao Yuan, Wang Handuo. Specific regulation of Th9 differentiation and its potential immunological applications of Xanthiazone[J]. Chinese Journal of Clinical Anatomy. 2025, 43(5): 573-577 https://doi.org/10.13418/j.issn.1001-165x.2025.5.11

References

[1] Wan J, Wu YQ, Ji XY, et al. IL-9 and IL-9-producing cells in tumor immunity[J]. Cell Commun Signal, 2020, 18(1), 50. DOI: 10.1186/s12964-020-00538-5.
[2] Végran F, Apetoh L, Ghiringhelli F. Th9 cells: a novel CD4 T-cell subset in the immune war against cancer[J]. Cancer Res, 2015, 75(3): 475-479. DOI: 10.1158/0008-5472.CAN-14-2748.
[3] Liu LT, Bi EG, Ma XZ, et al. Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9[J]. Nat Commun, 2020, 11(1): 5902. DOI: 10.1038/s41467-020-19672-2. 
[4] Chen YL, Ma SS, Pi DJ, et al. Luteolin induces pyroptosis in HT-29 cells by activating the Caspase1/Gasdermin D signalling pathway[J]. Front Pharmacol, 2022, 13, 952587. DOI: 10.3389/fphar.2022.952587.
[5] Alibakhshi A, Malekzadeh R, Hosseini SA, et al. Investigation of the therapeutic role of native plant compounds against colorectal cancer based on system biology and virtual screening[J]. Sci Rep, 2023, 13, 11451. DOI: 10.1038/s41598-023-38134-5.
[6] West JR, Goodlett CR. Teratogenic effects of alcohol on brain development[J]. Ann Med,1990, 22, 319-325. DOI: 10.3109/07853899009147914.
[7]  Li WD, Wu Y, Zhang L, et al. Characterization of xanthatin: anticancer properties and mechanisms of inhibited murine melanoma in vitro and in vivo[J]. Phytomedicine, 2013, 20, 865-873. DOI: 10.1016/j.phymed.2013.03.006
[8] Romero M, Zanuy M, Rosell E, et al. Optimization of xanthatin extraction from Xanthium spinosum L. and its cytotoxic, anti-angiogenesis and antiviral properties[J]. Eur J Med Chem, 2015, 90, 491-496. DOI: 10.1016/j.ejmech.2014.11.060.
[9] Bi SX, Li XH, Wei CS, et al. The antitumour growth and antiangiogenesis effects of xanthatin in murine glioma dynamically evaluated by dynamic contrast-enhanced magnetic resonance imaging[J]. Phytother Res, 2019, 33, 149-158. DOI: 10.1002/ptr.6207.
[10]Takeda S, Noguchi M, Matsuo K, et al. (-)-Xanthatin up-regulation of the GADD45gamma tumor suppressor gene in MDA-MB-231 breast cancer cells: role of topoisomerase II alpha inhibition and reactive oxygen species[J]. Toxicology, 2013, 305, 1-9. DOI: 10.1016/j.tox.2012.12.019.
[11]Zhang L, Tao L, Ruan JS, et al. Xanthatin induces G2/M cell cycle arrest and apoptosis in human gastric carcinoma MKN-45 cells[J]. Planta Med, 2012, 78, 890-895. DOI: 10.1055/s-0031-1298481.
[12]Geng YD, Zhang L,Wang GY, et al. Xanthatin mediates G (2)/M cell cycle arrest, autophagy and apoptosis via ROS/XIAP signaling in human colon cancer cells[J]. Nat Prod Res, 2020, 34, 2616-2620. DOI: 10.1080/14786419.2018.1544976.
[13] Bevington SL, Cauchy P, Withers DR, et al. T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation[J]. Front Immunol, 2017, 8, 204. DOI: 10.3389/fimmu.2017.00204.
[14] Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties[J]. Annu Rev Immunol, 1989, 7, 145-173. DOI: 10.1146/annurev.iy.07.040189.001045.
[15] Veldhoen M, Uyttenhove C, van Snick J, et al. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset[J]. Nat Immunol, 2008, 9, 1341-1346. DOI: 10.1038/ni.1659.
[16] Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126, 1121-1133. DOI: 10.1016/j.cell.2006.07.035.
[17] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299, 1057-1061. DOI: 10.1126/science.1079490.
[18] Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20, 1126-1167. DOI: 10.1089/ars.2012.5149.
[19] Bhattacharyya S, Hossain DMS, Mohanty S, et al. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts[J]. Cell Mol Immunol, 2010, 7, 306-315. DOI: 10.1038/cmi.2010.11.
[20] Qin X, Guo BST, Wan B, et al. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine[J]. J Immunol, 2010, 185, 1855-1863. DOI: 10.4049/jimmunol.0903853.
[21] Zhao PC, Xiao X, Ghobrial RM, et al. IL-9 and Th9 cells: progress and challenges[J]. Int Immunol, 2013, 25, 547-551. DOI: 10.1093/intimm/dxt039.
[22] Angkasekwinai P, Th9 Cells in Allergic Disease[J]. Curr Allergy Asthma Rep, 2019, 19, 29. DOI: 10.1007/s11882-019-0860-8.
[23] He Y, Dong L, Cao Y, et al., IL-9 and Th9 Cells in Tumor Immunity[J]. Adv Exp Med Biol, 2020, 12(40), 35-46. DOI: 10.1007/978-3-030-38315-2_3.
PDF(3224 KB)

Accesses

Citation

Detail

Sections
Recommended

/