[1] Campbell BCV, Khatri P . Stroke[J]. The Lancet, 2020, 396(10244): 129-142. DOI:10.1016/S0140-6736(20)31179-X.
[2] Cox MF, Hascup ER, Bartke A , et al. Friend or foe? Defining the role of glutamate in aging and Alzheimer’s disease[J]. Front Aging, 2022, 3: 929474. DOI:10.3389/fragi.2022.929474.
[3] Neves D, Salazar IL, Almeida RD, et al. Molecular mechanisms of ischemia and glutamate excitotoxicity[J]. Life Sci, 2023, 328: 121814. DOI:10.1016/j.lfs.2023.121814.
[4] Fan G, Liu J, Liu M, et al. Piceatannol-3’-O-β-D-glucopyranoside inhibits neuroexcitotoxicity and ferroptosis through NMDAR/NRF2/BACH1/ACSL4 pathway in acute ischemic stroke[J]. Free Radic Bio Med, 2025, 227: 667-679. DOI:10.1016/j.freeradbiomed.2024.12.029.
[5] Pilotto A, Galli A, Sala A, et al. Dopaminergic deficits along the spectrum of Alzheimer’s disease[J]. Mol Psychiatry, 2025, 30(7):3069-3076. DOI:10.1038/s41380-025-02913-5.
[6] Zott B, Simon MM, Hong W, et al. A vicious cycle of amyloid β-dependent neuronal hyperactivation[J]. Science (New York, N.Y.), 2019, 365(6453): 559-565. DOI:10.1126/science.aay0198.
[7] Chen X, Shen J, Zhou Q, et al. Astragaloside VI ameliorates post-stroke Depression via upregulating the NRG-1-Mediated MEK/ERK pathway[J]. Pharmaceuticals (Basel,), 2022, 15(12): 1551. DOI:10.3390/ph15121551.
[8] Cheng YQ, Zhang RX, Li XY, et al. The Dopamine transporter is a new target for ischemic stroke[J]. CNS Neurosci Ther, 2024, 30(10): e70092. DOI:10.1111/cns.70092.
[9] 史磊, 孟祥才, 曹思思, 等. 防风的本草溯源[J]. 现代中药研究与实践, 2021, 35(4): 93-97. DOI:10.13728/j.1673-6427.2021.04.021.
Shi L, Meng XC, Cao SS, et al. Tracing to the origin of saposhnikovia divaricata [J]. Research and Practice on Chinese Medicines, 2021,35(4):93-97.DOI:10.13728/j.1673-6427.2021.04.021.
[10]赵建桐, 周长来, 周华琳, 等. 防风通圣散治疗精神分裂症104例临床研究[J]. 山东精神医学, 2001, (2): 91-94.
Zhao JT, Zhou CL, Zhou HL, et al. A clinical study on the effects of Fang Feng Tong Sheng San in treating 104 patients with schizophrenia [J]. Journal of Psychiatry, 2001, (2):91-94.
[11]Wang H, Wang L, Zhang N, et al. Houshiheisan compound prescription protects neurovascular units after cerebral ischemia[J]. Neural Regen Res, 2014, 9(7): 741-748. DOI:10.4103/1673-5374.131580.
[12]Yang M, Wang CC, Wang WL, et al. Saposhnikovia divaricata-An Ethnopharmacological, Phytochemical and Pharmacological Review[J]. Chin J Integr Med, 2020, 26(11): 873-880. DOI:10.1007/s11655-020-3091-x.
[13]孙夏霖.防风对类风湿性关节炎及伴发抑郁症的药效物质基础研究[D].吉林农业大学,2022.DOI:10.27163/d.cnki.gjlnu.2022.000405.
Sun XL. Study on the pharmacodynamic material basis of Saposhnikoviadivaricata (Turcz.) Schischk on rheumatoid arthritis and itsaccompanying depression[D]. Jilin Agricultural University, 2022. DOI:10.27163/d.cnki.gjlnu.2022.000405.
[14]Xu G, Qin M, Yu M, et al. Structural characterization of a polysaccharide derived from Saposhnikovia divaricatee (Turcz.) Schischk with anti-allergic and antioxidant activities[J]. J Ethnopharmacol, 2024, 320: 117425. DOI:10.1016/j.jep.2023.117425.
[15]Guo L, Qu B, Song C, et al. Celastrol attenuates 6-hydroxydopamine-induced neurotoxicity by regulating the miR-146a/PI3K/Akt/mTOR signaling pathways in differentiated rat pheochromocytoma cells[J]. J Affect Disord, 2022, 316: 233-242. DOI:10.1016/j.jad.2022.08.026.
[16]郭迎超, 梁爽, 周波. 中药含药血清制备的思考与探讨[J]. 云南中医中药杂志,2021, 42(9): 51-55. DOI:10.16254/j.cnki.53-1120/r.2021. 09.017.
Guo YC, Liang S, Zhou B. Consideration and exploration of preparation of medicinal serum for Traditional Chinese medicine[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2021, 42(9): 51-55. DOI:10.16254/j.cnki.53-1120/r.2021.09.017.
[17]Yue Q, Wang K, Guan M, et al. Single-vesicle electrochemistry reveals sex difference in vesicular storage and release of catecholamine[J]. Angew Chem Int Ed Engl, 2022, 61(14): e202117596. DOI:10.1002/anie.202117596.
[18]赵伟, 孙国志. 不同种实验动物间用药量换算[J]. 畜牧兽医科技信息, 2010, (5): 52-53.
Zhao W, Sun GZ. Conversion of drug dosage between different experimental animals [J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2010, (5):52-53.
[19]倪丽, 陈芳, 缪兴龙, 等. 基于糖类组分的防风药材质量一致性评价研究[J]. 中国中药杂志, 2023, 48(13): 3535-3545. DOI:10.19540/j.cnki.cjcmm.20230411.203.
Ni L, Chen F, Miao XL, et al. Carbohydrate-based quality consistency evaluation of Saposhnikoviae Radix[J]. China Journal of Chinese Materia Medica, 2023, 48(13):3535-3545.
[20]Yang M, Wang CC, Wang WL, et al. Saposhnikovia divaricata-An Ethnopharmacological, Phytochemical and Pharmacological Review[J]. Chin J Integr Med, 2020, 26(11): 873-880. DOI:10.1007/s11655-020-3091-x.
[21]Cui Y, Fan H, Sun M, et al. Chemical structural elucidation and immunomodulatory activity of a new polysaccharide from saposhnikoviae radix[J]. Planta Medica, 2025, DOI:10.1055/a-2573-7718.
[22]Zheng M, Ma M, Yang Y, et al. Structural characterization and antioxidant activity of polysaccharides extracted from Porphyra haitanensis by different methods[J]. Int J Biol Macromol, 2023, 242: 125003. DOI:10.1016/j.ijbiomac.2023.125003.
[23]李静, 张静, 陈小松. 基于Keap1-Nrf2/ARE轴防风提取物对间质性肺炎幼鼠肺纤维化及血管新生的抑制作用研究[J]. 中药材, 2022, 45(4): 968-973. DOI:10.13863/j.issn1001-4454.2022.04.037.
Li J, Zang J, Chen XS. Inhibitory effect of Saposhnikovia extract on pulmonary fibrosis and angiogenesis in juvenile rats with interstitial pneumonia based on Keap1-Nrf2/ARE axis [J]. Journal of Chinese Medicinal Materials, 2022, 45(4): 968-973. DOI:10.13863/j.issn1001-4454.2022.04.037.
[24]Zhang Q, Zhao H, Wang L, et al. Effects of wind-dispelling drugs and deficiency-nourishing drugs of Houshiheisan compound prescription on astrocyte activation and inflammatory factor expression in the corpus striatum of cerebral ischemia rats[J]. Neural Regen Res, 2012, 7(24): 1851-1857. DOI:10.3969/j.issn.1673-5374.2012.24.002.
[25]Shah P, Plitman E, Iwata Y, et al. Glutamatergic neurometabolites and cortical thickness in treatment-resistant schizophrenia: Implications for glutamate-mediated excitotoxicity[J]. J Psychiatr Res, 2020, 124: 151-158. DOI:10.1016/j.jpsychires.2020.02.032.
[26]Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion[J]. Nat Rev Mol Cell Biol, 2024, 25(2): 101-118. DOI:10.1038/s41580-023-00668-x.
[27]Ando K, Kudo Y, Takahashi M. Negative regulation of neurotransmitter release by calpain: a possible involvement of specific SNAP-25 cleavage[J]. J Neurochem, 2005, 94(3): 651-658. DOI:10.1111/j.1471-4159.2005.03160.x.
[28]Wang B, Wang Y, Zhang J, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis[J]. Arch Toxicol, 2023, 97(6): 1439-1451. DOI:10.1007/s00204-023-03476-6.
[29]Lauwers E, Goodchild R, Verstreken P. Membrane lipids in presynaptic function and disease[J]. Neuron, 2016, 90(1): 11-25. DOI:10.1016/j.neuron.2016.02.033.
[30]Uchiyama Y, Maxson MM, Sawada T, et al. Phospholipid mediated plasticity in exocytosis observed in PC12 cells[J]. Brain Res, 2007, 1151: 46-54. DOI:10.1016/j.brainres.2007.03.012.
[31]Ren L, Oleinick A, Svir I, et al. Amperometric measurements and dynamic models reveal a mechanism for how zinc alters neurotransmitter release[J]. Angew Chem Int Ed Engl, 2020, 59(8): 3083-3087. DOI:10.1002/anie.201913184.
[32]Oleinick A, Hu R, Ren B, et al. Theoretical model of neurotransmitter release during in vivo vesicular exocytosis based on a grainy biphasic nano-structuration of chromogranins within dense core matrixes[J]. J Electrochem Soc, 2015, 163(4): H3014. DOI:10.1149/2.0031604jes.
[33]Hu K, Le Vo KL, Hatamie A, et al. Quantifying intracellular single vesicular catecholamine concentration with open carbon nanopipettes to unveil the effect of L-DOPA on vesicular structure[J]. Angew Chem Int Ed Engl, 2022, 61(1): e202113406. DOI:10.1002/anie.202113406.
[34]Sombers LA, Hanchar HJ, Colliver TL, et al. The effects of vesicular volume on secretion through the fusion pore in exocytotic release from PC12 cells[J]. J Neurosci, 2004, 24(2): 303-309. DOI:10.1523/JNEUROSCI.1119-03.2004.