Augmentation on collateral vessel growth and functional recovery by Rho Kinase inhibitor GSK429286A in a lower limb ischemia model

Liao Xiaoheng, Pan Zhihao, Zhou Jingting, Hou Xindi, Ran Rong, Zhuang Yuehong

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (5) : 540-547.

PDF(6840 KB)
PDF(6840 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (5) : 540-547. DOI: 10.13418/j.issn.1001-165x.2025.5.07

Augmentation on collateral vessel growth and functional recovery by Rho Kinase inhibitor GSK429286A in a lower limb ischemia model

  • Liao Xiaoheng, Pan Zhihao, Zhou Jingting, Hou Xindi, Ran Rong, Zhuang Yuehong* 
Author information +
History +

Abstract

Objective    To evaluate the effects of Rho kinase inhibitor GSK429286A on collateral vessel growth and functional recovery after lower limb ischemia.   Methods   The right femoral artery was isolated, ligated, and transected. Animals were randomly assigned to receive 10 mg/kg GSK429286A or saline. 3D modelings of lower limb arteries were established via X-ray and Micro CT, and collateral vessel diameter was assessed using CD31 and α-SMA staining. VEGF and HO-1 protein levels in mouse gastrocnemius muscle were measured by Western blot. Blood flow in the affected footpad was monitored by laser speckle flowmetry. Muscle atrophy and vascular density in the gastrocnemius were evaluated by H&E staining and immunostaining. The foot function index was analyzed. Additionally, the effects of GSK429286A on HUVEC proliferation and migration were assessed using EdU and scratch assays.  Results On postoperative 14 days, rats in the GSK429286A group had significantly larger vessel diameter (P<0.01). On postoperative 3 days, VEGF levels were lower but HO-1 levels were higher in the GSK429286A group compared to the saline group. Blood perfusion recovery was significantly better in the GSK429286A group, with differences on postoperative 7 and 14 days (P<0.01). On postoperative 30 days, muscle atrophy was less severe (P<0.01) and vascular density was lower (P<0.05) in the GSK429286A group. The foot function index was significantly better in the GSK429286A group, with differences on postoperative 30 days (P<0.05). In vitro, GSK429286A promoted HUVEC proliferation and migration.  Conclusions   GSK429286A promotes collateral vessel formation and functional recovery in rodent models of lower limb ischemia.

Key words

GSK429286A;  /   / Lower limb ischemia;  /   / Collateral circulation;  /   /  Functional recovery

Cite this article

Download Citations
Liao Xiaoheng, Pan Zhihao, Zhou Jingting, Hou Xindi, Ran Rong, Zhuang Yuehong. Augmentation on collateral vessel growth and functional recovery by Rho Kinase inhibitor GSK429286A in a lower limb ischemia model[J]. Chinese Journal of Clinical Anatomy. 2025, 43(5): 540-547 https://doi.org/10.13418/j.issn.1001-165x.2025.5.07

References

[1]  王学斌, 陈跃鑫. 外周动脉闭塞性疾病的抗血小板与抗凝治疗进展[J]. 临床药物治疗杂志, 2015, 13(4):5-10. DOI: 10.3969/j.issn.1672-3384.2015.04.002.
       Wang Xuebin, Chen Yuexin. Advances in Antiplatelet and Anticoagulant Therapy for Peripheral Arterial Occlusive Disease[J]. Journal of Clinical Medication, 2015, 13(4):5-10. DOI: 10.3969/j.issn.1672-3384.2015.04.002.
[2] Murabito JM, Evans JC, Nieto K, et al. Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study[J]. Am Heart J. 2002 Jun;143(6):961-965. DOI: 10.1067/mhj.2002.122871. 
[3]  Adam DJ, Beard JD, Cleveland T, et al; BASIL trial participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial[J]. Lancet. 2005;366(9501):1925-1934. DOI: 10.1016/S0140-6736(05)67704-5.
[4] Uccioli L, Meloni M, Izzo V, et al. Critical limb ischemia: current challenges and future prospects[J]. Vasc Health Risk Manag, 2018, 14:63-74. DOI: 10.2147/VHRM.S125065.
[5]  鲁景元, 徐文健, 汪涛, 等. 外周动脉疾病治疗进展[J]. 现代生物医学进展,2016,16(33):6593-6600. DOI:10.13241/j.cnki.pmb. 2016. 33.053.
‌       Lu Jingyuan, Xu Wenjian, Wang Tao, et al. Advances in the Treatment of Peripheral Artery Disease[J]. Progress in Modern Biomedicine, 2016, 16(33):6593-6600. DOI: 10.13241/j.cnki.pmb.2016.33.053.
[6] Earnshaw JJ, Whitman B, Foy C. National Audit of Thrombolysis for Acute Leg Ischemia (NATALI): clinical factors associated with early outcome[J]. J Vasc Surg, 2004, 39(5):1018-1025. DOI: 10.1016/j.jvs.2004.01.019.
[7]  Semenza GL. Vascular responses to hypoxia and ischemia[J]. Arterioscler Thromb Vasc Biol, 2010,30(4):648-652. DOI: 10.1161/ATVBAHA. 108.181644. 
[8]  Abu Dabrh AM, Steffen MW, Undavalli C, et al. The natural history of untreated severe or critical limb ischemia[J]. J Vasc Surg, 2015, 62(6):1642-1651.e3. DOI: 10.1016/j.jvs.2015.07.065. Epub 2015 Sep 26.
[9]  Behuliak M, Bencze M, Vaněčková I, et al. Basal and Activated Calcium Sensitization Mediated by RhoA/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension[J]. Biomed Res Int, 2017:8029728. DOI: 10.1155/2017/8029728. 
[10]张聪慧,姜岩,杜成华,等. 弥漫性轴索损伤相关信号通路研究进展[J]. 系统医学,2024, 9(20):187-190. DOI: 10.19368/j.cnki.2096-1782. 2024.20.187.
       Zhang Conghui, Jiang Yan, Du Chenghua, et al. Research Progress on Signal Pathways Related to Diffuse Axonal Injury[J]. Systems Medicine, 2024, 9(20):187-190. DOI: 10.19368/j.cnki.2096-1782. 2024.20.187.
[11] Feng Y, LoGrasso PV, Defert O, et al. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential[J]. J Med Chem, 2016, 59(6):2269-2300. DOI: 10.1021/acs.jmedchem.5b00683.
[12] El-Waseif AG, Nader MA, Salem HA, et al. Fasudil, a ROCK inhibitor, preserves limb integrity in a mouse model of unilateral critical limb ischemia: Possible interplay of inflammatory and angiogenic signaling pathways[J]. Life Sci,2022, 309:121019. DOI: 10.1016/j.lfs. 2022. 121019. 
[13]Fayed HS, Bakleh MZ, Ashraf JV, et al. Selective ROCK Inhibitor Enhances Blood Flow Recovery after Hindlimb Ischemia[J]. Int J Mol Sci, 2023, 24(19):14410. DOI: 10.3390/ijms241914410. 
[14]Kochi T, Imai Y, Takeda A, et al. Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models[J]. PLoS One, 2013, 8(12):e84047. DOI: 10.1371/journal.pone.0084047. 
[15]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis[J]. Nat Med, 2000, 6(4):389-395. DOI: 10.1038/74651.
[16]Sakai H, Hirano T, Takeyama H, et al. Acetylcholine-induced phosphorylation of CPI-17 in rat bronchial smooth muscle: the roles of Rho-kinase and protein kinase C[J]. Can J Physiol Pharmacol, 2005, 83(4):375-381. DOI: 10.1139/y05-022.
[17]Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton (Hoboken), 2010, 67(9):545-554. DOI: 10.1002/cm.20472.
[18]Greathouse KM, Boros BD, Deslauriers JF, et al. Distinct and complementary functions of rho kinase isoforms ROCK1 and ROCK2 in prefrontal cortex structural plasticity[J]. Brain Struct Funct, 2018, 223(9):4227-4241. DOI: 10.1007/s00429-018-1748-4. 
PDF(6840 KB)

Accesses

Citation

Detail

Sections
Recommended

/