Biomechanical differences between Hangman's fracture and its various surgical treatment strategies

He Yinghua, Liu Yansong, Liang Zhongbiao, Sun Hao, Chen Hu, Xie Ningling, Tu Qiang

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (4) : 491-497.

PDF(1282 KB)
PDF(1282 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (4) : 491-497. DOI: 10.13418/j.issn.1001-165x.2025.4.22

Biomechanical differences between Hangman's fracture and its various surgical treatment strategies

  • He Yinghua1, Liu Yansong1, Liang Zhongbiao1, Sun Hao2, Chen Hu3, Xie Ningling3, Tu Qiang1,2,3*
Author information +
History +

Abstract

To systematically evaluate the biomechanical characteristics of various types of Hangman's fractures and their corresponding treatment strategies, thereby providing an evidence-based foundation for clinical decision-making. Relevant literature was retrieved and analyzed from databases such as PubMed and CNKI (China National Knowledge Infrastructure) using the keywords "Hangman" and "biomechanics."The results indicated that non-surgical treatment for stable fractures (Type I) and surgical intervention for unstable fractures (Types II, IIa, and III) can achieve favorable biomechanical stability and long-term outcomes, provided the fracture is accurately classified. Hangman's fractures can be divided into stable and unstable types, and both anterior and posterior surgical approaches are effective in restoring cervical spine stability.Biomechanical analyses have demonstrated that in cases involving injuries to the anterior longitudinal ligament and intervertebral disc, C2~3 anterior cervical discectomy and fusion (ACDF) offers superior immediate stability. Posterior single-segment physiological fixation preserves C1~2 rotational function to the greatest extent but fails to address C2~3 instability. In contrast, posterior C2~3 fixation and fusion provides higher mechanical stiffness and more effectively stabilizes the fracture site. C1~3 long-segment fixation and fusion offers greater stiffness and multidirectional stability in flexion-extension, lateral bending, and rotational movements. However, it compromises atlantoaxial mobility-a drawback that can be mitigated by employing temporary long-segment fixation.

Key words

Hangman fracture /   /   / Biomechanical analysis /   /   / Anterior surgery /   /   / Posterior surgery

Cite this article

Download Citations
He Yinghua, Liu Yansong, Liang Zhongbiao, Sun Hao, Chen Hu, Xie Ningling, Tu Qiang. Biomechanical differences between Hangman's fracture and its various surgical treatment strategies[J]. Chinese Journal of Clinical Anatomy. 2025, 43(4): 491-497 https://doi.org/10.13418/j.issn.1001-165x.2025.4.22

References

[1]  Carneiro-Filho GS, de Macêdo LP, Andrade LI, et al. Upper cervical spine injuries: profile and management of 120 cases [J]. Int J Spine Surg, 2022,16(6):1001-1008. DOI:10.14444/8321.
[2] Salottolo K, Betancourt A, Banton K L, et al. Epidemiology of C2 fractures and determinants of surgical management: analysis of  a national registry [J]. Trauma Surg Acute Care Open, 2023, 8(1):e1094. DOI:10.1136/tsaco-2023-001094.
[3]  Cai Y, Khanpara S, Timaran D, et al. Traumatic spondylolisthesis of axis: clinical and imaging experience at a level  one trauma center [J]. Emerg Radiol, 2022, 29(4):715-722. DOI:10.1007/s10140-022-02041-5.
[4]  Li G, Wang Q. Detailed observation of anatomical location and pattern in Hangman's fracture  based on computed tomography three-dimensional reconstruction [J]. J Orthop Surg Res, 2023,18(1):136. DOI:10.1186/s13018-023-03622-x.
[5]  Menon VK. Mechanically relevant anatomy of the axis vertebra and its relation to Hangman's  fracture: An illustrated essay[J]. Neurospine,2019,16(2):223-230. DOI:10.14245/ns.1938140.070.
[6]  Pal GP, Routal RV, Saggu SK. The orientation of the articular facets of the zygapophyseal joints at the  cervical and upper thoracic region[J]. J Anat, 2001,198(Pt 4):431-441. DOI:10.1046/j.1469-7580. 2001. 19840431.x.
[7]  Tan SH, Teo EC, Chua HC. Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae  of Chinese Singaporeans[J]. Eur Spine J, 2004,13(2):137-146. DOI:10.1007/s00586-003-0586-z.
[8]  Turtle J, Kantor A, Spina NT, et al. Hangman's fracture[J]. Clin Spine Surg, 2020,33(9):345-354. DOI:10.1097/BSD.0000000000001093.
[9]  Teo EC, Paul JP, Evans JH, et al. Experimental investigation of failure load and fracture patterns of C2 (axis)[J]. J Biomech, 2001, 34(8):1005-1010. DOI:10.1016/s0021-9290(01)00071-9.
[10]Menon KV, Raniga SB. Trabecular anatomy of the axis vertebra: a study of shaded volume-rendered  computed tomography images[J]. World Neurosurg, 2018,110:526-532. DOI:10.1016/j.wneu. 2017. 06. 185.
[11]Levine AM, Edwards CC. The management of traumatic spondylolisthesis of the axis[J]. J Bone Joint Surg Am,1985, 67(2):217-226. DOI:10.1038/sj.sc.3100786.
[12]李凭跃,尹庆水,赵卫东. 各型Hangman骨折稳定性的生物力学评价[J]. 中华创伤骨科杂志,2004, 6(2):91-93. DOI:10.3760/cma.j.issn.1671-7600.2004.02.025.
       Li PY, Yin QS, Zhao WD. Biomechanical evaluation of different types of Hangman's fracture [J].Chinese Journal of Orthopedic Trauma,2004,6(2):91-93. DOI:10.3760/cma.j.issn.1671-7600.2004.02.025. 
[13]袁野. Hangman骨折相关有限元分析及临床治疗[D]. 第一军医大学, 2006.
       Yuan Y. Finite Element Analysis and Clinical Treatment of Hangman's Fracture [D]. First Military Medical University, 2006. 
[14] 谢雁春,项良碧,陈语,等. Hangman骨折及内固定术生物力学评价与临床应用[J]. 创伤与急危重病医学, 2014, 2(1):30-33. DOI:10.16048/j.cnki.tccm.2014.01.007.
       Xie YC, Xiang LB, Chen Y, et al. Biomechanical properties of stability and clinical application in Hangman fracture treated with internal fixation and clinical application[J]. Trauma and Critical Care Medicine, 2014, 2(1):30-33. DOI:10.16048/j.cnki.tccm. 2014.01.007.
[15]Murphy H, Schroeder GD, Shi WJ, et al. Management of Hangman's fractures: a systematic review[J]. J Orthop Trauma, 2017, 31 Suppl 4:S90-S95. DOI:10.1097/BOT.0000000000000952.
[16] Kong W, Yang X, Li Z, et al. Analysis of the cervical sagittal alignment in patients with unstable Hangman  fracture under C2~3 anterior discectomy and fusion[J]. World Neurosurg, 2020,137:e1-e8. DOI:10.1016/j.wneu.2019.08.147.
[17]Patel J, Kundnani VG, Kuriya S, et al. Unstable Hangman's fracture: anterior or posterior surgery [J]? J Craniovertebr Junction Spine, 2019,10(4):210-215. DOI:10.4103/jcvjs.JCVJS_112_19.
[18]陈语. Hangman骨折的生物力学及临床研究[D]. 第二军医大学, 2004. DOI:10.7666/d.y657785.
      Chen Y. Biomechanical and Clinical Study of Hangman Fracture [D].Second Military Medical University,2004. DOI:10.7666/d.y657785. 
[19]黄阳亮,刘少喻,赵卫东,等. 颈前路钢板置入内固定加椎间植骨治疗Ⅱ型Hangman骨折的生物力学评价[J]. 中国组织工程研究与临床康复, 2010,14(39):7251-7253. DOI:10.3969/j.issn.1673-8225. 2010. 39. 008.
      Huang Y L, Liu S Y, Zhao W D, et al. Biomechanical evaluation of anterior cervical plate fixation combinedwith intervertebral bone graft for the treatment of Hangman's fracture [J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2010,14(39):7251-7253. DOI:10.3969/j.issn.1673-8225.2010.39.008. 
[20]Sawarkar D, Agrawal M, Singh PK, et al. Evolution to pedicle reformation technique in surgical management of Hangman's  fracture[J]. World Neurosurg, 2021,149:e481-e490. DOI:10.1016/j.wneu.2021.02.001.
[21]Liu Y, Li X, Chen T, et al. Minimally invasive percutaneous new designed transpedicular lag-screw fixation  for the management of Hangman fracture using O-arm-based navigation: a clinical  study [J]. BMC Musculoskelet Disord, 2023, 24(1):494. DOI:10.1186/s12891-023-06614-4.
[22]Prost S, Barrey C, Blondel B, et al. Hangman's fracture: Management strategy and healing rate in a prospective  multi-centre observational study of 34 patients[J]. Orthop Traumatol Surg Res, 2019,105(4):703-707. DOI:10.1016/j.otsr.2019.03.009.
[23]Jun X H, Yi L. Percutaneous fixation of levine-edwards type II Hangman's fractures under the  guidance of an orthopedic robot[J]. Orthopedics,2023,46(1):59-63. DOI:10.3928/01477447-20221031-08.
[24]李凭跃,尹庆水,夏虹,等. 不同后路短节段内固定术治疗Hangman骨折的生物力学比较[J]. 中国脊柱脊髓杂志, 2008,18 (2):126-129. DOI:10.3969/j.issn.1004-406X.2008.02.011.
       Li P Y, Yin Q S, Xia H, et al. Biomechanical study of different posterior cervical oligo- segmental fixation for the treatment of Hang man's fracture [J].Chinese Journal of Spine and Spinal Cord, 2008,18(2):126-129. DOI:10.3969/j.issn.1004-406X.2008.02.011. 
[25]阮汉江, 金根洋, 李新武, 等. 三种后路单节段固定方式治疗Ⅱ型Hangman骨折的生物力学性能[J]. 中国组织工程研究, 2021, 25(15):2309-2314. DOI:10.3969/j.issn.2095-4344.3812.
       Ruan HJ, Jin GY, Li XW, et al. Biomechanical properties of three types of posterior single-segmentfixation for type I Hangman's fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(15):2309-2314. DOI:10.3969/j.issn.2095-4344.3812.
[26]唐可, 胡一平. 后路C2~3钉棒内固定术治疗不稳定型Hangman骨折[J]. 临床骨科杂志,2018, 21( 1):4-7. DOI:10.3969/j.issn.1008-0287. 2018.01.002.
       Tang K, Hu YP. Clinical effect of posterior C2~3 screw-rod fixation for treatment of unstable Hangman's fracture [J]. Journal of Clinical Orthopedics, 2018,21(1):4-7. DOI:10.3969/j.issn.1008-0287. 2018. 01.002. 
[27]Duggal N, Chamberlain RH, Perez-Garza LE, et al. Hangman's fracture: a biomechanical comparison of stabilization techniques[J]. Spine (Phila Pa 1976), 2007,32(2):182-187. DOI:10.1097/01.brs. 0000251917.83529.0b.
[28]马向阳, 邹小宝, 王宾宾, 等. 后路钉棒固定非融合治疗新鲜Ⅱ型和ⅡA型Hangman骨折[J]. 中国矫形外科杂志, 2019, 27(22):2080-2083. DOI:10.3977/j.issn.1005-8478.2019.22.15.
       Ma XY, Zou XB, Wang BB, et al. Posterior screw-rod fixation without fusion for fresh type II and IIA Hangman's fractures [J]. Orthopedics Journal of China, 2019,27(22):2080-2083. DOI:10.3977/j.issn.1005-8478.2019.22.15.
[29]Chittiboina P, Wylen E, Ogden A, et al. Traumatic spondylolisthesis of the axis: a biomechanical comparison of clinically  relevant anterior and posterior fusion techniques[J]. J Neurosurg Spine, 2009,11(4):379-387. DOI:10.3171/2009.4.SPINE08516.
[30]Hu Y, Dong WX, Kepler CK, et al. A novel anterior odontoid screw plate for C1-C3 internal fixation: an in vitro  biomechanical study[J]. Spine (Phila Pa 1976), 2016, 41(2):E64-E72.DOI:10.1097/BRS. 0000000000001165.
PDF(1282 KB)

Accesses

Citation

Detail

Sections
Recommended

/