Biomechanical properties of anterior cruciate ligament in rats with knee osteoarthritis

Yang Haolin, Wang Mian, Li Zitao, Deng Yuping, Zhao Dongliang, Huang Wenhua

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (3) : 342-350.

PDF(3824 KB)
PDF(3824 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (3) : 342-350. DOI: 10.13418/j.issn.1001-165x.2025.3.15

Biomechanical properties of anterior cruciate ligament in rats with knee osteoarthritis

  • Yang Haolin1, 8, Wang Mian2, 3,  Li Zitao4, 5,  Deng Yuping2, 6, Zhao Dongliang7, 8, Huang Wenhua1, 2, 3, 6,  9 
Author information +
History +

Abstract

Objective   To investigate the changes of biomechanical response of anterior cruciate ligament (ACL) in KOA rats.   Methods   The left hind limb was immobilized for 3 weeks to establish a rat model of early knee osteoarthritis, after success of model was confirmed by Saffron-O and Fast Green staining, two groups of anterior cruciate ligaments were dissected for macroscopic mechanical testing by multi-scale micro-mechanical loading system. The changes of microscopic components were determined by histological staining. The microstructure was observed by two-photon microscopy.    Results    The results of Saffron-O and Fast Green staining showed early pathological changes of cartilage in KOA after 3 weeks of left hind limb fixation. HE staining showed that anterior cruciate ligament was infiltrated by inflammatory cells in early KOA, ligaments in an inflammatory environment. The macroscopic mechanical test indicated that stiffness, low tensile modulus, and high tensile modulus of ACL changed in early arthritis. The initial slope of compensatory side was higher than that of the right anterior cruciate ligament in the normal group. The microstructure observation confirmed that ACL was disordered after arthritis, and the arrangement direction of collagen fibers was disordered.    Conclusions    These results indicate that the changes of mechanical properties of ACL of KOA induced by joint braking are mainly characterized by an increase of tissue stiffness, which may be related to inflammatory infiltration of ligament tissue and the changes of microscopic collagen fiber structure.

Key words

Knee osteoarthritis /   /   / Anterior cruciate ligament /   /   / Biomechanics /   /   /   / Viscoelasticity

Cite this article

Download Citations
Yang Haolin, Wang Mian, Li Zitao, Deng Yuping, Zhao Dongliang, Huang Wenhua. Biomechanical properties of anterior cruciate ligament in rats with knee osteoarthritis[J]. Chinese Journal of Clinical Anatomy. 2025, 43(3): 342-350 https://doi.org/10.13418/j.issn.1001-165x.2025.3.15

References

[1] Schulze-Tanzil G. Intraarticular Ligament Degeneration Is Interrelated with Cartilage and Bone Destruction in Osteoarthritis[J]. Cells, 2019, 8(9): 990. DOI:10.3390/cells8090990.
[2]  Duong V, Oo WM, Ding C, et al. Evaluation and Treatment of Knee Pain: A Review[J]. JAMA, 2023, 330(16): 1568. DOI: 10.1001/jama.2023.19675.
[3] Black AL, Clark AL. Sexual dimorphism in knee osteoarthritis: Biomechanical variances and biological influences[J]. J Orthop, 2022, 32: 104-108. DOI:10.1016/j.jor.2022.05.016.
[4]  Heijink A, Gomoll AH, Madry H, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee[J]. Knee Surg, Sports Traumatol, Arthrosc, 2012, 20(3): 423-435. DOI:10.1007/s00167-011-1818-0.
[5]  Hasegawa A, Otsuki S, Pauli C, et al. Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis[J]. Arthritis  Rheum, 2012, 64(3): 696-704. DOI:10.1002/art.33417.
[6] Moo EK, Ebrahimi M, Sibole SC, et al. The intrinsic quality of proteoglycans, but not collagen fibres, degrades in osteoarthritic cartilage[J]. Acta Biomater, 2022, 153: 178-189. DOI:10.1016/j.actbio.2022.09.002.
[7] Temple-Wong MM, Bae WC, Chen MQ, et al. Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle[J]. Osteoarthritis and Cartilage, 2009, 17(11): 1469-1476. DOI:10.1016/j.joca.2009.04.017.
[8]  Spierings J, Van Den Hengel M, Janssen RPA, et al. Knee instability caused by altered graft mechanical properties after anterior cruciate ligament reconstruction: the early onset of osteoarthritis?[J]. Front Bioeng Biotechnol, 2023, 11: 1244954. DOI:10.3389/fbioe.2023.1244954.
[9]  Nagelli C, Cook J, Kuroki K, et al. Does Anterior Cruciate Ligament Innervation Matter for Joint Function and Development of Osteoarthritis?[J]. J Knee Surg, 2016, 30(04): 364-371. DOI:10.1055/s-0036-1592145.
[10]Ramos-Mucci L, Elsheikh A, Keenan C, et al. The anterior cruciate ligament in murine post-traumatic osteoarthritis: markers and mechanics[J]. Arthritis Res Ther, 2022, 24(1): 128. DOI:10.1186/s13075-022-02798-7.
[11]Seitz AM, Osthaus F, Schwer J, et al. Osteoarthritis-Related Degeneration Alters the Biomechanical Properties of Human Menisci Before the Articular Cartilage[J]. Front Bioeng Biotechnol, 2021, 9: 659989. DOI:10.3389/fbioe.2021.659989.
[12]Peters AE, Geraghty B, Bates KT, et al. Biomechanics of aging and osteoarthritic human knee ligaments[A]. (2021-11-21)[2024-07-07]. 
[13]Nakamura Y, Ogawa H, Sohmiya K, et al. Relationship between histological changes of the anterior cruciate ligament and knee function in osteoarthritis patients[J]. Orthop Traumatol Surg  Res, 2022, 108(8): 103341. DOI:10.1016/j.otsr.2022.103341.
[14]Shi X, Yu W, Wang T, et al. Electroacupuncture alleviates cartilage degradation: Improvement in cartilage biomechanics via pain relief and potentiation of muscle function in a rabbit model of knee osteoarthritis[J]. Biomed Pharmacother, 2020, 123: 109724. DOI:10.1016/j.biopha.2019.109724.
[15]Lequesne MG, Mery C, Samson M, et al. Indexes of Severity for Osteoarthritis of the Hip and Knee: Validation–Value in Comparison with Other Assessment Tests[J]. Scand J Rheumatol Suppl, 1987, 16(sup65): 85-89. DOI:10.3109/03009748709102182.
[16]姚馨悦, 吉佳乐, 叶双慧, 等. 不同条件下四种脱钙液脱钙效果的对比分析[J].临床与实验病理学杂志, 2022,38(08):1010-1012. DOI: 10.13315/j.cnki.cjcep.2022.08.027. 
      YAO XY, JI JL, YE SH, et al. Four kinds of decalcified fluid under different conditions the effect of decalcified analysis [J]. Chinese Journal of Clinical and Experimental Pathology,2022,38(08):1010-1012.DOI:10.13315/j.cnki.cjcep.2022.08.027.
[17]曾俊华, 马笃军, 彭力平, 等. 实验兔膝骨关节炎模型的建立及鉴定[J]. 中国临床研究, 2016,29(05):679-682. DOI: 10.13429/j.cnki.cjcr.2016.05.033.
      ZENG JH, MA DJ, PENG LP, et al. Establishment and identification of the Experimental Rabbit Knee Osteoarthritis Model [J]. Chinese Journal of Clinical Research,2016,29(05):679-682.DOI:10.13429/j.cnki.cjcr.2016.05.033.
[18]王世杰. 基于不同证型膝骨关节炎软骨组织的病理形态学研究[D]. 甘肃中医药大学.
       WANG SJ. Pathologic study of cartilage tissue of knee osteoarthritis with different syndromes [D]. Gansu University Of Chinese Medicine,2023. DOI:10.27026/d.cnki.ggszc.2023.000485.
[19]谢平金, 罗臻, 卢启贵, 等. 川芎嗪和过表达miR-20b-5p干预早期膝骨关节炎模型大鼠滑膜、软骨和软骨下骨血管新生的组织学变化[J]. 中国组织工程研究, 2023, 27(02): 237-245. DOI: https://doi.org/10.12307/2022.1023
       XIE PJ, LUO Z, LU QG, et al. Histological changes of synovial, cartilage and subchondral bone angiogenesis in rats with knee osteoarthritis in an early intervention with ligustrazine and overexpression of miR-20b-5p[J].Chinese Journal of Tissue Engineering Research,2023,27(02):237-245. DOI: https://doi.org/10.12307/2022.1023
[20]余伟杰, 刘爱峰, 陈继鑫, 等. 基于“骨正筋柔”理论探讨保膝截骨治疗膝骨关节炎的生物力学内涵[J]. 中华中医药杂志, 2023, 38(11): 5255-5259.
      YU WJ, LIU AF, CHEN JX, et al. Discussion on the biomechanical connotation of knee preservation osteotomy in the treatment of knee osteoarthritis based on the theory of "bone and muscle"[J].Chinese Journal of Traditional Chinese Medicine,2023,38(11):5255-5259.
[21]Kuyinu EL, Narayanan G, Nair LS, et al. Animal models of osteoarthritis: classification, update, and measurement of outcomes[J]. J Orthop Surg Res, 2016, 11(1): 19. DOI:10.1186/s13018-016-0346-5.
[22] 李书博, 陈赫, 孙云, 等. 膝骨关节炎实验动物模型现状研究进展[J]. 长春中医药大学学报, 2022,38: 936-940. DOI: 10.13463/j.cnki.cczyy.2022.08.027.
       LI SB, CHEN H, SUN Y, et al. Journal of Changchun University of Traditional Chinese Medicine,2022,38(08):936-940.DOI:10.13463/j.cnki.cczyy.2022.08.027.
[23]Wang D, Wang Z, Li M, et al. The underlying mechanism of partial anterior cruciate ligament injuries to the meniscus degeneration of knee joint in rabbit models[J]. J Orthop Surg Res, 2020, 15(1): 428. DOI:10.1186/s13018-020-01954-6.
[24]Andriacchi TP, Mündermann A, Smith RL, et al. A Framework for the in Vivo Pathomechanics of Osteoarthritis at the Knee[J]. Ann Biomed Eng, 2004,32(3):447-457. DOI:10.1023/B:ABME.0000017541. 82498.37.
[25]Kaneguchi A, Ozawa J, Yamaoka K. The effects of immobilization duration on joint contracture formation after anterior cruciate ligament reconstruction in rats[J]. Clin Biomech, 2023, 103: 105926. DOI:10.1016/j.clinbiomech.2023.105926.
[26]Du X, Liu Z, Tao X, et al. Research Progress on the Pathogenesis of Knee Osteoarthritis[J/OL]. Orthop Surg, 2023, 15(9): 2213-2224. DOI:10.1111/os.13809.
[27]柏中喜, 方兴刚, 马龙祥, 等. 脉冲电磁场通过Wntβ-catenin信号通路改善膝骨关节炎大鼠炎症反应的机制[J]. 中国医学物理学杂志, 2022, 39(05): 617-622. DOI:10.3969/j.issn.1005-202X.2022.05.016.
    BAI ZX, FANG XG, MA LX, et al. Mechanism of pulsed electromagnetic field in improving inflammatory response in rats with knee osteoarthritis through Wntβ-catenin signaling pathway[J].Chinese Journal of Medical Physics,2022,39(05):617-622. DOI:10.3969/j.issn.1005-202X.2022.05.016.
[28]罗娆珊, 唐青梅, 龚广, 等. 改良Videman法构建兔膝骨关节炎模型的探索[J]. 中国医药科学, 2024, 14(01): 25-28. DOI:10.20116/j.issn2095-0616.2024.01.05.
      LUO RS, TANG QM, GONG G, et al. Exploration of modified Videman method to construct rabbit knee osteoarthritis model[J].Chinese Medical Sciences, 2024,14(01):25-28. DOI:10.20116/j.issn2095-0616.2024.01.05.
[29]李春, 张艳玲, 刘娣, 等. 温针灸对膝骨关节炎兔损伤前交叉韧带修复及相关因子的影响[J]. 中国组织工程研究, 2024, 28(23): 3621-3626.DOI: https://doi.org/10.12307/2024.415.
      LI C, ZHANG YL, LIU D, et al. Effect of warm acupuncture on anterior cruciate ligament repair and related factors in rabbits with knee osteoarthritis[J].Chinese Journal of Tissue Engineering Research,2024,28(23):3621-3626. DOI: https://doi.org/10.12307/2024.415.
[30]Chu CR, Aadriacchi TP. Dance between biology, mechanics, and structure: A systems-based approach to developing osteoarthritis prevention strategies: biology, mechanics, structure in Osteoarthritis[J]. J Orthop Res, 2015, 33(7): 939-947. DOI:10.1002/jor.22817.
[31]Mullaji AB, Marawar SV, Simha M, et al. Cruciate Ligaments in Arthritic Knees[J]. J Arthroplasty, 2008, 23(4): 567-572. DOI:10.1016/j.arth.2007.05.024.
[32]郭长青, 张丽萍. 针刀干预对膝骨关节炎兔髌韧带拉伸、蠕变及应力松弛等生物力学特性的影响[J]. 中国科学:生命科学, 2016, 46(08): 976-982. DOI: 10.1360/N052016-00015.
    GUO CQ, ZHANG LP. Effect of acupuncture intervention on biomechanical properties such as tension, creep and stress relaxation of patellar ligament in rabbits with knee osteoarthritis[J].Science in China:Life Sciences,2016,46(08):976-982. DOI: 10.1360/N052016-00015.
[33]金晓飞, 郭长青, 蒋昭霞, 等. 膝骨关节炎模型内侧副韧带的生物力学特性[J]. 中国组织工程研究与临床康复, 2011, 15(43): 8046-8049.
      JIN XF, GUO CQ, JIANG ZX, et al. Biomechanical properties of medial collateral ligament in knee osteoarthritis model[J].Chinese Journal of Tissue Engineering Research and Clinical Rehabilitation,2011,15(43):8046-8049.
[34]Peters AE, Geraghty B, Bates KT, et al. Ligament mechanics of ageing and osteoarthritic human knees[J]. Front Bioeng Biotechnol, 2022, 10: 954837. DOI:10.3389/fbioe.2022.954837.
[35]张闻天, 邓羽平, 刘晓云, 等. 弹性蛋白对前交叉韧带力学响应影响的弹性蛋白酶定量分析[J]. 中国组织工程研究, 2024, 28(22): 3451-3456.DOI: https://doi.org/10.12307/2024.473.
      ZHANG WT, DENG YP, LIU XY, et al. Quantitative analysis of elastase effect of elastin on mechanical response of anterior cruciate ligament[J].Chinese Journal of Tissue Engineering Research,2024,28(22):3451-3456. DOI: https://doi.org/10.12307/2024.473.
[36]Fang F, Lake SP. Experimental evaluation of multiscale tendon mechanics: experimental multiscale tendon mechanics[J]. J Orthop Res, 2017, 35(7): 1353-1365. DOI:10.1002/jor.23488.
[37]Ishizaki Y, Wang J, Kim J, et al. Contributions of collagen and elastin to elastic behaviours of tendon fascicle[J]. Acta Biomater, 2024, 176: 334-343. DOI:10.1016/j.actbio.2024.01.014.
[38]Henninger HB, Valdez WR, Scott SA, et al. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading[J]. Acta Biomater, 2015, 25: 304-312. DOI:10.1016/j.actbio.2015.07.011.
PDF(3824 KB)

Accesses

Citation

Detail

Sections
Recommended

/