Mechanism analysis of Resolvin D1 in treating intracerebral hemorrhage

Zhang Ziyou, Lv Xiaoyu, Zhou Xinpei, Li Zhuang, Zhang Bensi

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (3) : 328-334.

PDF(4915 KB)
PDF(4915 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (3) : 328-334. DOI: 10.13418/j.issn.1001-165x.2025.3.13

Mechanism analysis of Resolvin D1 in treating intracerebral hemorrhage

  • Zhang Ziyou1,3, Lv Xiaoyu1, Zhou Xinpei1, Li Zhuang2, Zhang Bensi1*
Author information +
History +

Abstract

Objective   To explore the mechanism of Resolvin D1 in the treatment of intracranial  hemorrhage by using network pharmacology and molecular docking techniques. Methods The target information related to RvD1 and intracranial hemorrhage was obtained from five databases: PubChem, TargetNet, Stitch, Disgenet and GeneCards. Then, the protein interaction analysis and core target screening were carried out using String database and Cytoscape software. The enrichment analysis of Go and KEGG was performed at the same time, and finally the molecular docking experiment was conducted for verification. Results A total of 115 RvD1-related target genes and 1705 intracranial hemorrhage    targets were obtained, and there were 60 overlapping genes among them. The PPI network  analysis results showed a complex network of 60 nodes and 554 edges. The top 10 core targets were IL6, IL1B, TNF, IL10, TLR4, IFNG, STAT3, CD4, MMP9, and CCL2. Molecular docking test showed that RvD1 has strong binding affinity for these target proteins. Conclusions In the treatment of intracranial hemorrhage, RvD1 may affect the inflammatory response and protein binding process by regulating multiple target genes, and plays a role in multiple signaling pathways. 

Key words

Network pharmacology /   /   / Molecular docking /   /   / Resolvin D1 /   /   / Intracranial hemorrhage

Cite this article

Download Citations
Zhang Ziyou, Lv Xiaoyu, Zhou Xinpei, Li Zhuang, Zhang Bensi. Mechanism analysis of Resolvin D1 in treating intracerebral hemorrhage[J]. Chinese Journal of Clinical Anatomy. 2025, 43(3): 328-334 https://doi.org/10.13418/j.issn.1001-165x.2025.3.13

References

[1] Tenny S, Thorell W. Intracranial Hemorrhage[M]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; February 17, 2024. PMID: 29262016.
[2] Sengupta J, Alzbutas R, Falkowski-Gilski P, et al. Intracranial hemorrhage detection in 3D computed tomography images using a  bi-directional long short-term memory network-based modified genetic algorithm[J]. Front Neurosci, 2023,17:1200630. DOI:10.3389/fnins.2023.1200630.
[3] Zhou JF, Xiong Y, Kang X, et al. Application of stem cells and exosomes in the treatment of intracerebral  hemorrhage: an update[J]. Stem Cell Res Ther, 2022,13(1):281. DOI:10.1186/s13287-022-02965-2.
[4] Li L, Cheng SQ, Sun YQ, et al. Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize  neutrophils after ischemic stroke[J]. Cell Rep, 2023,42(6):112617. DOI:10.1016/j.celrep.2023.112617.
[5]  Ye Y, Yang Q, Wei J, et al. RvD1 improves resident alveolar macrophage self-renewal via the  ALX/MAPK14/S100A8/A9 pathway in acute respiratory distress syndrome[J]. J Adv Res, 2024 Jan 17:S2090-1232(24)00030-34. DOI: 10.1016/j.jare.2024.01.017.
[6]  Sun Q, Wang J, Jing Y, et al. Influences of resolvin D1 and D2 on the risk of type 2 diabetes mellitus: a  Chinese community-based cohort study[J]. Front Immunol, 2023, 14:1143456. DOI: 10.3389/fimmu. 2023.1143456.
[7] Wen H, Tan J, Tian M, et al. TGF-β1 ameliorates BBB injury and improves long-term outcomes in mice after ICH[J]. Biochem Biophys Res Commun, 2023,654:136-144. DOI: 10.1016/j.bbrc.2023.03.007. 
[8] Pierini P, Novelli A, Bossi F, et al. Medical versus neurosurgical treatment in ICH patients: a single center  experience[J]. Neurol Sci, 2024,45(1):223-229. DOI: 10.1007/s10072-023-07015-0. 
[9] Rose-John S, Jenkins B J, Garbers C, et al. Targeting IL-6 trans-signalling: past, present and future prospects[J]. Nat Rev Immunol, 2023,23(10):666-681. DOI: 10.1038/s41577-023-00856-y.
[10]Lei P, Li Z, Hua Q, et al. Ursolic Acid Alleviates Neuroinflammation after Intracerebral Hemorrhage by  Mediating Microglial Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway[J]. Int J Mol Sci, 2023 Sep 30;24(19):14771. DOI: 10.3390/ijms241914771. 
[11]Miyakawa AA, Borin TF, Campos L, et al. Activation of Interleukin-1 Beta in Arterialized Vein Grafts and the Influence of  the -511C/T IL-1β Gene Polymorphism[J]. J Cardiovasc Dev Dis, 2019 Apr 30;6(2):20. DOI: 10.3390/jcdd6020020.
[12]Sheppard O, Coleman MP, Durrant CS. Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta[J]. J Neuroinflammation, 2019,16(1):106. DOI: 10.1186/s12974-019-1490-8.
[13]Chédotal H, Narayanan D, Povlsen K, et al. Small-molecule modulators of tumor necrosis factor signaling[J]. Drug Discov Today, 2023,28(6):103575. DOI: 10.1016/j.drudis.2023.103575.
[14]Rowhanirad S, Taherianfard M. The neuroprotective effects of Chalcones from Ashitaba on cuprizone-induced demyelination via modulation of brain-derived neurotrophic factor and tumor necrosis factor α[J]. Brain Behav. 2023;13(9):e3144. DOI:10.1002/brb3.3144.
[15]Tao W, Zhang G, Liu C, et al. Low-dose LPS alleviates early brain injury after SAH by modulating microglial M1/M2 polarization via USP19/FOXO1/IL-10/IL-10R1 signaling[J]. Redox Biol, 2023,66:102863. DOI: 10.1016/j.redox.2023.102863.
[16]Du Y, Wang J, Zhang J, et al. Intracerebral hemorrhage-induced brain injury in mice: The role of peroxiredoxin 2-Toll-like receptor 4 inflammatory axis[J]. CNS Neurosci Ther, 2024,30(3):e14681. DOI: 10.1111/cns.14681. 
[17]Liang T, Zhu Z, Gong F, et al. Galectin-3 promotes brain injury by modulating the phenotype of microglia via binding TLR-4 after intracerebral hemorrhage[J]. Aging (Albany NY), 2023,15(17):9041-9058. DOI: 10.18632/aging.205014. 
[18]Ng CT, Fong LY, Abdullah M. Interferon-gamma (IFN-γ): Reviewing its mechanisms and signaling pathways on the regulation of endothelial barrier function[J]. Cytokine, 2023,166:156208. DOI: 10.1016/j.cyto.2023.156208.
[19]Gao L, Lu Q, Huang LJ, et al. Transplanted neural stem cells modulate regulatory T, γδ T cells and  corresponding cytokines after intracerebral hemorrhage in rats[J]. Int J Mol Sci, 2014,15(3):4431-4441. DOI: 10.3390/ijms15034431.
[20]Zhuang J, Cao Y, Guo G, et al. Inhibition of BACE1 attenuates microglia-induced neuroinflammation after intracerebral hemorrhage by suppressing STAT3 activation[J]. Aging (Albany NY), 2023,15(15):7709-7726. DOI: 10.18632/aging.204935. 
[21] Yuan S, Titova OE, Zhang K, et al. Circulating proteins and peripheral artery disease risk: observational and Mendelian randomization analyses[J]. Eur Heart J Open, 2023,3(3):oead56. DOI: 10.1093/ehjopen/oead056.
[22]Feng D, Zhou J, Liu H, et al. Astrocytic NDRG2-PPM1A interaction exacerbates blood-brain barrier disruption after subarachnoid hemorrhage[J]. Sci Adv, 2022,8(39):eabq2423. DOI: 10.1126/sciadv.abq2423. 
[23]Liu Y, Wang F, Li Z, et al. Neuroprotective Effects of Chlorogenic Acid in a Mouse Model of Intracerebral Hemorrhage Associated with Reduced Extracellular Matrix Metalloproteinase Inducer[J]. Biomolecules, 2022;12(8):1020. Published 2022 Jul 22. DOI:10.3390/biom12081020.
[24]Guo F, Xu D, Lin Y, et al. Chemokine CCL2 contributes to BBB disruption via the p38 MAPK signaling pathway  following acute intracerebral hemorrhage[J]. FASEB J, 2020,34(1):1872-1884. DOI: 10.1096/fj.201902203RR.
PDF(4915 KB)

Accesses

Citation

Detail

Sections
Recommended

/