Efficacy of umbilical cord extract on hair and hair follicles

Wu Shenhua, Wang Xueer, Fan Xiaoyu, Zhang Min, Zhang Lin

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (3) : 313-322.

PDF(3731 KB)
PDF(3731 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (3) : 313-322. DOI: 10.13418/j.issn.1001-165x.2025.3.11

Efficacy of umbilical cord extract on hair and hair follicles

  • Wu Shenhua1,Wang Xueer1, Fan Xiaoyu2, Zhang Min1*, Zhang Lin1*
Author information +
History +

Abstract

Objective    To explore and develop animal-derived functional cosmetic raw materials, pig umbilical cord extracts were tested for protein concentration, subjected to metabolomics and proteomics analysis, and their efficacy on hair follicle cells, animal hair follicle cycles, and androgenetic alopecia (AGA) models was studied.    Methods   The protein concentration and metabolomic analysis of porcine umbilical cord extract were carried out, and the evaluation of the efficacy of the hair follicle cycle and the efficacy of mouse hair follicle cycle was completed by establishing a mouse hair follicle cycle model and treating mice with different concentrations of porcine umbilical cord extract and tracking the skin color, hair follicle changes and hair diameter of mice, and analyzing the histological morphology of mouse hair follicles. The histomorphology of hair follicles in mice was analyzed, the levels of androgen receptor and Dickkopf-related protein 1 (DKK1) were detected, and the changes of skin blood flow were tracked to complete the efficacy evaluation of the androgenetic alopecia model.   Results    (1) The protein concentration of pig umbilical cord extract extracted by patented extraction technology was (7.45±1.23) mg/ml; (2) The number of proteins and peptides of pig umbilical cord extract, the number of available proteins: (187±12), the number of peptides: (696±44) (n=3); (3) The hair diameter of the back hair follicles of mice increased after treatment with porcine umbilical cord extract; (4) The number of hair follicles entering the growth phase increased significantly after the porcine umbilical cord extract was applied to the dorsal skin of mice (15-90 μg/mL), and the size and number of hair follicles gradually increased;(5) After the umbilical cord extract was applied, the hair coverage of the back skin increased, the hair bulb of hair follicles increased, the expression of AR and DKK1 decreased, and the blood flow increased.   Conclusions   (1) Porcine umbilical cord extract contains abundant and diverse small molecule metabolites, a variety of proteins, polypeptides and other substances; (2) Porcine umbilical cord extract can promote the thickening of hair follicles in mice, and accelerate the transition from telogen phase to growth phase; (3) Umbilical cord extract can improve the average blood perfusion in the area of hair loss and inhibit the miniaturization of hair follicles caused by androgenetic alopecia by inhibiting the expression of AR and DKK1.

Key words

Umbilical cord extract /   /   / Hair follicle cycle /   /   / Androgenetic alopecia(AGA) /   /   / Wnt/β-catenin

Cite this article

Download Citations
Wu Shenhua, Wang Xueer, Fan Xiaoyu, Zhang Min, Zhang Lin. Efficacy of umbilical cord extract on hair and hair follicles[J]. Chinese Journal of Clinical Anatomy. 2025, 43(3): 313-322 https://doi.org/10.13418/j.issn.1001-165x.2025.3.11

References

[1] 国家食品药品监督管理局. 国际化妆品原料标准中文名称目录[J]. 2011, 22(7):1.
    National Medical Products Administration. Chinese standard nomenclature directory for international cosmetic ingredients[J]. Chinese Journal of Clinical Anatomy, 2011, 22(7):1.
[2]  申桂英.  《已使用化妆品原料目录(2021年版)》发布[J]. 精细与专用化学品, 2021, 29(5):28.
      Shen GY. Publication of the Inventory of Used Cosmetic Ingredients (2021 Edition)[J]. Fine and Specialty Chemicals, 2021, 29(5):28.
[3]  余树民, 凌占业, 刘丹, 等. 干细胞标志分子在猪脐带组织中的表达[J]. 西北农林科技大学学报(自然科学版),2014,42(5):39-44. DOI: 10.13207/j.cnki.jnwafu.2014.05.034
      Yu SM, Ling ZY, Liu D, et al. Expression of stem cell marker molecules in porcine umbilical cord tissue[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(5):39-44. DOI: 10.13207/j.cnki.jnwafu.2014.05.034.
[4]  李学家, 姜交华, 张兆清, 等. 牛脐带提取物的特定成分分析及细胞功效评价[J]. 香料香精化妆品, 2024,(3):148-154. DOI: 10.20099/j.issn.1000-4475.2023.0283.
      Li XJ, Jiang JH, Zhang ZQ, et al. Specific component analysis and cellular efficacy evaluation of bovine umbilical cord extracts[J]. Flavour Fragrance Cosmetics, 2024, (3):148-154. DOI: 10.20099/j.issn.1000-4475.2023.0283.
[5]  Melanie P, Dragin J U, Hristina O, et al. Systematic Review of the Application of Perinatal Derivatives in Animal Models on Cutaneous Wound Healing[J]. Frontiers in Bioengineering and Biotechnology,2021, 9:742858. DOI: 10.3389/FBIOE.2021.742858.
[6]  代海洋,洪璧楷,肖叶玉,等. 用于高场MRS研究的人脐带间充质干细胞代谢物提取方法选择的优化[J]. 磁共振成像, 2011, 2(6):430-434. DOI: 10.3969/j.issn.1674-8034.2011.06.008.
      Dai HY, Hong BK, Xiao YY, et al. Optimization of metabolite extraction methods from human umbilical cord mesenchymal stem cells for high-field MRS studies[J]. Chinese Journal of Magnetic Resonance Imaging, 2011, 2(6):430-434. DOI: 10.3969/j.issn.1674-8034.2011.06.008.
[7]  施恩,刘英芹. 新生小鼠皮肤发育与毛囊发生的组织形态学变化及分期[J]. 中国组织工程研究, 2017, 21(36): 5812-5817.
     Shi E, Liu YQ. Histomorphological changes and staging of skin development and hair follicle initiation in neonatal mice[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(36):5812-5817.
[8] Qin J, Min Z, Yanan K, et al. Activin B promotes initiation and development of hair follicles in mice.[J]. Cells Tissues Organs, 2013,198(4):318-326. DOI: 10.1159/000356304.
[9] Caihua L, Yue G, Jianru W, et al. Reflectance spectroscopy for noninvasive evaluation of hair follicle stage[J]. Journal of Biomedical Optics, 2014, 20(5):51011. DOI: 10.1117/1.JBO.20.5.051011.
[10] 杨淑霞,马圣清,钟志红. C57BL6小鼠毛发周期动物模型的建立[J]. 中华皮肤科杂志,1999,32(4):252. DOI: 10.3760/j.issn:0412-4030. 1999. 04.011.
      Yang SX, Ma SQ, Zhong ZH. Establishment of a hair cycle animal model in C57BL/6 mice[J]. Chinese Journal of Dermatology, 1999, 32(4):252. DOI: 10.3760/j.issn:0412-4030.1999.04.011.
[11] 张建中. 中国雄激素性秃发诊疗指南[J]. 临床皮肤科杂志, 2014, 43(3):182-186. DOI: 10.16761/j.cnki.1000-4963.2014.03.025.
      Zhang JZ. Chinese guidelines for the diagnosis and treatment of androgenetic alopecia[J]. Journal of Clinical Dermatology, 2014, 43(3):182-186. DOI: 10.16761/j.cnki.1000-4963.2014.03.025.
[12]Adel A, Jerry S. Androgens and hair loss.[J]. Current opinion in endocrinology, diabetes, and obesity,2009,16(3):246-253. DOI: 10.1097/med.0b013e32832b100a.
[13] Leona Y, Nick R, Rod S. Role of genetics and sex steroid hormones in male androgenetic alopecia and female pattern hair loss: an update of what we now know.[J]. The Australasian journal of dermatology,2011,52(2):81-88. DOI: 10.1111/j.1440-0960.2011.00745.x.
[14]王馨雨, 王子妤. 雄激素性脱发中西医研究进展[J]. 中国中医药现代远程教育,2019,17(6):122-124.
      Wang XY, Wang ZY. Research progress on androgenetic alopecia in traditional Chinese and Western medicine[J]. Chinese Modern Distance Education of Traditional Chinese Medicine, 2019, 17(6):122-124.
[15] 周源,温斯健,罗秀玲,等. 雄激素性秃发的发病机制及相关的非手术治疗新进展[J]. 医学综述, 2021, 27(3): 442~446.
       Zhou Y, Wen SJ, Luo XL, et al. Pathogenesis and recent advances in non-surgical treatment of androgenetic alopecia[J]. Medical Recapitulate, 2021, 27(3):442-446.
[16]Rama A, Yusheng Z, J. J J. Treatment of Androgenetic Alopecia Using PRP to Target Dysregulated Mechanisms and Pathways
[J]. Frontiers in Medicine,2022,9:843127. DOI: 10.3389/FMED.2022. 843127.
[17]Rui Z, Yan L, Kun J, et al. Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep.[J]. Cell death & disease, 2020,11(5):407. DOI: 10.1038/s41419-020-2622-x.
[18]梁皓,赵云杰,金磊,等. 雄激素受体在雄性激素源性脱发患者的表达观察[J]. 中国医学创新, 2014(18):60-62. DOI: 10.3969/j.issn.1674-4985.2014.18.020.
      Liang H, Zhao YJ, Jin L, et al. Expression of androgen receptors in patients with male androgenetic alopecia[J]. Medical Innovation of China, 2014(18):60-62. DOI: 10.3969/j.issn.1674-4985.2014.18.020.
[19] 陈修漾,陈达灿. 不同证候的雄激素性脱发患者受损头皮的病理特征及雄激素受体表达的规律[J]. 广州中医药大学学报, 2004(3):169-174.
       Chen XY, Chen DC. Pathological characteristics of damaged scalp and androgen receptor expression patterns in androgenetic alopecia patients with different syndromes[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2004(3):169-174.
[20]黄涛,万苗坚,董佳辉,等. 男性型脱发患者头皮雄激素受体表达的研究[J]. 中国美容医学, 2012, 21(5):778-781. DOI: 10.15909/j.cnki.cn61-1347/r.2012.05.071.
      Huang T, Wan MJ, Dong JH, et al. Study on androgen receptor expression in scalp of male pattern baldness patients[J]. Chinese Journal of Aesthetic Medicine, 2012, 21(5):778-781. DOI: 10.15909/j.cnki.cn61-1347/r.2012.05.071.
[21]Yoshiaki K, Robert K. Secreted antagonists of the Wnt signalling pathway.[J]. Journal of cell science,2003,116(Pt 13):2627-2634. DOI: 10.1242/jcs.00623.
[22]Wodarz A, Nusse R. MECHANISMS OF WNT SIGNALING IN DEVELOPMENT[J]. Annual Review of Cell and Developmental Biology,1998,14(1):59~88. DOI: 10.1146/annurev.cellbio.14.1.59.
[23]齐琳轩, 樊琳娜, 杨卫红, 等. 101B对人毛乳头细胞增殖及4种脱发相关基因表达的影响[J]. 临床皮肤科杂志, 2021, 50(1):17-21. DOI: 10.16761/j.cnki.1000-4963.2021.01.005.
       Qi LX, Fan LN, Yang WH, et al. Effect of 101B on proliferation of human dermal papilla cells and expression of four alopecia-related genes[J]. Journal of Clinical Dermatology, 2021, 50(1):17-21. DOI: 10.16761/j.cnki.1000-4963.2021.01.005.
[24]Fatehi A, Sadat M, Fayyad M, et al. Efficient Generation of Pancreatic Progenitor Cells from Induced Pluripotent Stem Cells Derived from a Non-Invasive and Accessible Tissue Source-The Plucked Hair Follicle.[J]. Cells, 2024, 13(12):1010. DOI: 10.3390/CELLS13121010.
[25]Soldatos K P. On elastic growth modelling of straight hair[J]. Mathematics and Mechanics of Solids,2018,23(2):221-232. DOI: 10.1177/1081286516680392.
[26]刘公言, 白莉雅, 李福昌, 等. 毛囊发育与周期性生长的调控信号通路研究进展[J]. 畜牧与兽医, 2021, 53(1):125-129.
       Liu GY, Bai LY, Li FC, et al. Research progress on regulatory signaling pathways in hair follicle development and cyclic growth[J]. Animal Husbandry & Veterinary Medicine, 2021, 53(1):125-129.
[27] 庄晓晟, 范卫新. 雄激素性秃发发病机制分子水平的研究进展[J]. 临床皮肤科杂志, 2012, 41(7): 446-447.
     Zhuang XS, Fan WX. Advances in molecular mechanisms of androgenetic alopecia[J]. Journal of Clinical Dermatology, 2012, 41(7):446-447.
[28]贾琪, 刘艳光, 罗新惠, 等. 毛囊干细胞主要信号分子调控研究进展[J]. 延边大学农学学报, 2021, 43(3):101-108. DOI: 10.13478/j.cnki.jasyu.2021.03.015. 
      Jia Q, Liu YG, Luo XH, et al. Research progress on signaling molecules regulating hair follicle stem cells[J]. Agricultural Science Journal of Yanbian University, 2021, 43(3):101-108. DOI:10.13478/j.cnki.jasyu. 2021. 03.015.
[29]徐海环, 董化江, 赵明亮. 脐带间充质干细胞上清提取物对糖尿病皮肤溃疡大鼠肿瘤坏死因子-α及血管内皮生长因子的影响[J]. 新乡医学院学报, 2017, 34(2): 90-93.
       Xu HH, Dong HJ, Zhao ML. Effects of umbilical cord mesenchymal stem cell supernatant extract on TNF-α and VEGF in diabetic skin ulcer rats[J]. Journal of Xinxiang Medical University, 2017, 34(2):90-93.
[30]徐海环, 董化江, 赵明亮. 脐带间充质干细胞上清冻干粉对大耳兔皮肤缺损的治疗作用[J]. 新乡医学院学报, 2016, 33(12):1041-1043.
       Xu HH, Dong HJ, Zhao ML. Therapeutic effect of lyophilized umbilical cord mesenchymal stem cell supernatant powder on skin defects in rabbits[J]. Journal of Xinxiang Medical University, 2016, 33(12):1041-1043.
[31]姜怀志, 陈洋, 常青. 血管内皮生长因子在哺乳动物皮肤毛囊周围血管新生过程中的调控作用[J]. 中国畜牧兽医, 2010, 37(5): 47-49.
       Jiang HZ, Chen Y, Chang Q. Regulatory role of vascular endothelial growth factor in angiogenesis around mammalian skin hair follicles[J]. China Animal Husbandry & Veterinary Medicine, 2010, 37(5):47-49.
[32]Kiichiro Y, F. BL, Michael D. Control of hair growth and follicle size by VEGF-mediated angiogenesis.[J]. The Journal of clinical investigation, 2001, 107(4): 409~417. DOI: 10.1172/JCI11317.
[33]Kuikui L Y J J. Stromal Vascular Fraction and Platelet-Rich Plasma Upregulate Vascular Endothelial Growth Factor Expression to Promote Hair Growth via the Wnt/β-Catenin Signaling Pathway[J]. Nanoscience and Nanotechnology Letters,2019,11(12):1685-1692. DOI: 10.1166/nnl. 2019.3057.
PDF(3731 KB)

Accesses

Citation

Detail

Sections
Recommended

/