重度骨质疏松条件下后路枢椎三种内固定方式的有限元分析

姚文君, 李才, 许刚, 叶雨辰, 朱坤, 王艳丽, 张长春

中国临床解剖学杂志 ›› 2022, Vol. 40 ›› Issue (2) : 198-203.

PDF(3425 KB)
PDF(3425 KB)
中国临床解剖学杂志 ›› 2022, Vol. 40 ›› Issue (2) : 198-203. DOI: 10.13418/j.issn.1001-165x.2022.2.15
临床生物力学

重度骨质疏松条件下后路枢椎三种内固定方式的有限元分析

  • 姚文君, 李才, 许刚, 叶雨辰, 朱坤, 王艳丽, 张长春
作者信息 +

Finite element analysis of three kinds of internal fixation method of posterior axis in the condition of severe osteoporosis

  • Yao Wenjun, Li Cai , Xu Gang , Ye Yuchen , Zhu Kun , Wang Yanli , Zhang Changchun*
Author information +
文章历史 +

摘要

目的 通过有限元分析重度骨质疏松(Severe osteoporosis,SOP)条件下后路枢椎不同植钉方式在上颈椎中的生物力学特性。  方法 对1例健康成年男性进行上颈椎CT扫描,获得图像。结合有限元前处理软件,设置材料属性模拟出SOP的寰枢椎(C1~C2)失稳模型,依据手术方案建立后路寰椎双侧椎弓根螺钉(B-C1PS)+枢椎3种不同植钉方式固定:枢椎双侧椎弓根螺钉(B-C2PS,模型A);枢椎双侧椎板螺钉(B-C2TL,模型B);B-C2PS联合B-C2TL(模型C)。分析3种模型屈伸、侧弯和轴向旋转工况下的C1~C2关节活动度、C1位移以及C2螺钉应力分布情况。  结果   在SOP的C1~C2失稳有限元模型上,模型C在不同工况下C1~C2关节活动度和C1位移最小。C2联合固定时螺钉受到的最大应力较单一固定小:模型C枢椎椎板钉在各个工况下最大应力值小于模型B,模型C枢椎椎弓根螺钉在各个工况下最大应力值小于模型A。模型C应力主要集中于C2PS根部及寰枢椎椎弓根螺钉与钉棒连接处。  结论    在SOP条件下采取模型C内固定方式较模型A、B稳定性更好。枢椎螺钉受到的应力产生分散,枢椎螺钉更加不容易产生术后疲劳性松动脱出。

Abstract

Objective To analyze the biomechanical characteristics of posterior axis different planting methods in upper cervical vertebra under severe osteoporosis (SOP).     Methods    A CT scanning on cervical vertebra was performed on a healthy adult man.  Combined with the finite element pre-processing software, the atlantoaxial instability model (C1~C2) of SOP was stimulated by setting material properties. According to the surgical plan, posterior bilateral atlas pedicle screw (B-C1PS)+ Axis of three different ways of planting nail fixation was established: axis bilateral pedicle screw (B-C2PS, model A) fixation, axis bilateral laminar screw (B-C2TL, model B) fixation, B-C1PS combined with B-C2TL fixation(model C). The range of motion of C1-C2 joint, C1 displacement and C2 screw stress distribution of the three internal fixation methods were analyzed under the bending extension, lateral bending and axial rotation conditions of the finite element model.    Results    The finite element model of C1-C2 instability in the SOP, Model C had the lowest range of motion of C1-C2 joint, C1 displacement in different conditions. Fixed screw under the maximum stress of C2 joint combined fixation was smaller than that of single fixation. The maximum stress of pedicle screw of the axis in the Model C was less than that of Model B under various working conditions, that of pedicle screw in the Model C was less than that of Model A. In Model C, the stress was mainly concentrated at C2PS roots and the joint between atlanto-axial vertebral pedicle screw and screw rod.    Conclusions    The inner fixation stability of Model C is better than that of Model A and Model B under SOP condition. The stress of axis is  dispersed, and the axis screw is less prone to postoperative fatigue loosening and prolapse.

关键词

寰枢椎失稳 /  重度骨质疏松 /  椎弓根螺钉 /  椎板螺钉 /  有限元

Key words

Atlantoaxial instability /  Severe osteoporosis /  Pedicle screw /  Laminar screw /  Finite element 

引用本文

导出引用
姚文君, 李才, 许刚, 叶雨辰, 朱坤, 王艳丽, 张长春. 重度骨质疏松条件下后路枢椎三种内固定方式的有限元分析[J]. 中国临床解剖学杂志. 2022, 40(2): 198-203 https://doi.org/10.13418/j.issn.1001-165x.2022.2.15
Yao Wenjun, Li Cai , Xu Gang , Ye Yuchen , Zhu Kun , Wang Yanli , Zhang Changchun. Finite element analysis of three kinds of internal fixation method of posterior axis in the condition of severe osteoporosis[J]. Chinese Journal of Clinical Anatomy. 2022, 40(2): 198-203 https://doi.org/10.13418/j.issn.1001-165x.2022.2.15
中图分类号: R318.01   

参考文献

[1]  Feng S, Tian W, Sun Y, et al. Effect of robot-assisted surgery on lumbar pedicle screw internal fixationin patients with osteoporosis[J]. World Neurosurg, 2019, 125:e1057-e1062. DOI:10.1016/j.wneu.2019.01.243.
[2]  Wang W, Liu C, Li J, et al. Comparison of the fenestrated pedicle screw and conventional pedicle screw in minimally percutaneous fixation for the treatment of spondylolisthesis with osteoporotic spine[J]. Clin Neurol Neurosurg, 2019, 183: 105377. DOI:10.1016/j.clineuro. 2019. 105377.
[3]  Lee DG, Park CK, Lee DC. Clinical and radiological comparison of 2 level anterior lumbar interbody fusion with posterolateral fusion and percutaneous pedicle screw in elderly patients with osteoporosis[J]. Medicine (Baltimore), 2020, 99(10): e19205. DOI: 10.1097/MD.00000 00000019205.
[4] Tarukado K, Tono O, Doi T. Simultaneous use of both bilateral in tralaminar and pedicle screw for C2 stabilization [J]. Asian Spine J, 2015,9(5): 789-793. DOI:10.4184/asj.2015.9.5.789.
[5]  唐晓军, 曹奇, 陈亮元, 等. 枢椎椎弓根螺钉进钉点及植钉方式的解剖研究[J]. 中国修复重建外科杂志, 2015, 29(2):175-178. DOI:10.7507/1002-1892.20150038.
[6]  Byeon Y, Lee BJ, Park JH. Freehand placement of the C1 pedicle screw using direct visualization of the pedicle anatomy and serial dilatation[J]. Korean J Neurotrauma, 2020, 16(2):207-215. DOI:10.13004/kjnt. 2020.16.e15.
[7]  姜泽威, 汤舒婷, 周纪平, 等. 3D打印导板辅助与徒手寰枢椎弓根钉置入比较[J].中国矫形外科杂志, 2021, 29(10):880-884. DOI:10.3977/j.issn.1005-8478.2021.10.04.
[8]  Wang XD, Feng MS, Hu YC. Establishment and finite element analysis of a three-dimensional dynamic model of upper cervical spine instability[J].Orthop Surg, 2019, 11(3):500-509. DOI:10.1111/os.12474.
[9] Wang HW, Ma LP, Yin YH, et al. Biomechanical rationale for the development of atlantoaxial instability and basilar invagination in patients with occipitalization of the atlas: a finite element analysis[J]. World Neurosurg, 2019,127:e474-e479. DOI:10.1016/j.wneu. 2019. 03. 174.
[10]Liao JC. Impact of osteoporosis on different type of short-segment posterior instrumentation for thoracolumbar burst fracture- a finite element analysis[J]. World Neurosurg, 2020, 139:e643-e651. DOI:10.1016/j.wneu.2020.04.056.
[11]Nobakhti S, Shefelbine SJ. On the relation of bone mineral density and the elastic modulus in healthy and pathologic bone[J]. Curr Osteoporos Rep, 2018, 16(4):404-410. DOI: 10.1007/s11914-018-0449-5.
[12]Brolin K, Halldin P. Development of a finite element model of the upper cervical spineand a parameter study of ligament characteristics[J]. Spine, 2004, 29(4):376-385. DOI: 10.1097/01.BRS.0000090820. 99182.2D.
[13]Lasswell TL, Cronin DS, Medley JB, et al. Incorporating ligament laxity in a finite element model for the upper cervical spine[J]. Spine J, 2017, 17(11):1755-1764. DOI:10.1016/j.spinee.2017.06.040.
[14] Zheng Y, Wang J, Liao S, et al. Biomechanical evaluation of a novel integrated artificial axis: a finite element study [J]. Medicine(Baltimore),2017, 96(47):e8597.DOI:10.1097/MD.0000000000008597.
[15] Panjabi M, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine [J]. Spine (Phila Pa1976), 1988, 13(7): 726-730. DOI: 10.1097/00007632-198807000-00003.
[16] 陈树金, 马向阳, 杨进城, 等.有限元法分析寰-枢椎椎弓根螺钉内固定的生物力学变化[J]. 中国组织工程研究, 2018, 22(31): 4970-4974. DOI: 10.3969/j.issn.2095-4344.0362.
[17] Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation[J]. Acta Neurochirurgica, 1994, 129(129):47-53. DOI: 10.1007/BF01400872.
[18 ] Sai Kiran NA, Sivaraju L, Vidyasagar K, et al. Safety and accuracy of anatomic and lateral fluoroscopic-guided placement of C2 pars/pedicle screws and C1 lateral mass screws, and freehand placement of C2 laminar screws[J]. World Neurosurg, 2018,118:e304-e315. DOI:10.1016/j.wneu.2018.06.184.
[19] Wang Y, Wang C, Yan M. Clinical outcomes of atlantoaxial dislocation combined with high-riding vertebral artery using C2 translaminar screws[J]. World Neurosurg, 2019, 122:e1511-e1518. DOI:10.1016/j.wneu.2018.11.092.[20] Wright NM. Posterior C2 fixation using bilateral,crossing C2 laminar screws:case series and technical note [J]. J Spinal Disord Tech, 2004, 17(2):158-162. DOI: 10.1097/00024720-200404000-00014.
[21] 邓轩赓, 熊小明, 石华刚, 等. 枢椎椎板钉治疗可复性寰枢椎脱位的近期疗效[J]. 中国修复重建外科杂志, 2019, 33(11):1419-1423. DOI:10.7507/1002-1892.201902026.
[22] Ikuta K, Sakamoto K, Hotta K, et al. Occipital bone erosion induced by C1 pedicle screw as a late complication of atlantoaxial fixation: a case report and literature review[J].Spine Deform, 2021, 9(2):621-625. DOI: 10.1007/s43390-020-00222-1.
[23] Clifton W, Nottmeier E, Edwards S, et al. Development of a novel 3D printed phantom for teaching neurosurgical trainees the freehand technique of C2 laminar screw placement[J]. World Neurosurg, 2019, 129: e812-e820. DOI: 10.1016/j.wneu.2019.06.038.
[24] Matsukawa K, Yato Y, Imabayashi H, et al. Impact of screw diameter and length on pedicle screw fixation strength in osteoporotic vertebrae: a finite element analysis[J]. Asian Spine J, 2021,15(5):566-574. DOI:10.31616/asj.2020.0353. 
[25]Okuyama K,Sato K,Abe E, et al. Stability of transpedicle screwing for the osteoporotic spine:an in vitro study of the mechanical stability[J]. Spine, 1993, 18(15):2240-2245. DOI:10.1097/00007632-199311 000- 00016.
[26]Panagiotopoulou O. Finite element analysis(FEA): applying an engineering method to functional morphology in anthropology and human biology[J]. Ann Hum Biol, 2009, 36(5):609-623. DOI:10.1080/03014460903019879.
[27] Kothari MK, Dalvie SS, Gupta S, et al. The C2 pedicle width, pars length, and laminar thickness in concurrent ipsilateral ponticulus posticus and high-riding vertebral artery: a radiological computed tomography scan-based study[J]. Asian Spine J, 2019, 13(2): 290-295. DOI: 10.31616/asj.2018.0057.
[28] Formentin C, Andrade EJ, Maeda FL, et al. Axis screws: results and complications of a large case series[J]. Rev Assoc Med Bras(1992), 2019, 65(2): 198-203. DOI: 10.1590/1806-9282.65.2.198.

基金

安徽省教育厅自然科学重点项目(KJ2019A0392);安徽省教育厅重点项目(KJ2020A1273);蚌埠医学院研究生科研创新计划(Byycx20029);蚌埠医学院自然科学重点项目(S202010367047)

PDF(3425 KB)

Accesses

Citation

Detail

段落导航
相关文章

/