多孔铌基生物材料的制备及其性能研究
熊建义, 欧阳建安, 王大平, 阮建明, 朱伟民, 费志强, 张洪
中国临床解剖学杂志 ›› 2013, Vol. 31 ›› Issue (1) : 89-94.
多孔铌基生物材料的制备及其性能研究
Fabrication of niobium-based biological materials via impregnation and its properties
目的 制备多孔铌并评价其相关性能。 方法 采用新型的泡沫浸渍法,以聚氨酯泡沫为载体制备出具有较高强度和良好生物相容性的多孔铌基材料。并借助分析天平、XRD、CS600碳硫测试仪和SEM对多孔铌的孔隙率、性能和微观结构进行了测试及观察,运用细胞生物学技术评价多孔铌的细胞生物相容性。 结果 多孔铌具有三维、连通孔隙结构且无任何杂质相,孔隙率为71.4%,孔径500 μm,平均密度为2.45 g/cm3,具有与人体松质骨相匹配的弹性模量和抗压强度;多孔铌不影响成骨细胞的增殖、黏附和表型表达。 结论 多孔铌具有高孔隙率结构,良好的力学性能及细胞生物相容性。
Objective to fabricate porous niobium and evaluate its properties. Methods Novel preparation of Polyurethane foam impregnated with niobium powders was used to fabricate the niobium-based materials, which have high strength and excellent biocompatibility. Analytical balance, XRD ,CS600carbon and sulfur analyzer and SEM were used to characterize its porosity, properties and microstructure. Cell biology techniques were used to evaluate the biocompatibility of porous niobium. Results There were three-dimensional, connected pore structure and pure phase in the porous niobium-based materials prepared by solid phase sintering. The porosity, pore size and average density was 71.4%, 500 μm and 2.45 g/cm3, respectively. The elastic modulus and compressive strength of three-dimensional connected porous Nb coincided with cancellous bone in mechanical properties. Porous niobium was suitable for the adhesion, growth and differentiation of osteoblasts. Conclusions Porous niobium possessed high porosity structure, good mechanical properties and biocompatibility.
[1] 李虎,虞奇峰,张波,等.浆料发泡法制备生物活性多孔钛及其性能
[J].稀有金属材料与工程,2006, 35(1):154-157.
[2] 张宇鹏,钟志源,张新平.造孔剂法制备孔隙率可控的多孔镍钛合金
[J].材料科学与工程学报,2007,25(6):938-942.
[3] Arciniegas M, Aparicio C, Manero JM, et al. Low elastic modulus metals for joint prosthesis:Tantalum and nickel-titanium foams
[J].Journal of the European Ceramic Society, 2007, 27(11):3391-3398.
[4] 刘培生,黄林国.多孔金属材料制备方法
[J].功能材料, 2002, 33(1):5-8.
[5] Douglas T, Queheillalt, Yasushi K, et al. Synthesis of stochastic open cell Ni-based foams
[J].Scripta Materialia, 2004, 50(3):313-317.
[6] 奚正平, 汤慧萍. 烧结金属多孔材料
[M].北京:冶金工业出版社, 2009:2-3.
[7] 李众利, 王岩, 张国强, 等. 新型三维连通多孔钛的制备及特性
[J]. 生物骨科材料与临床研究, 2007,4(1):1-4.
[8] Chou L, Firth JD, Uitto VJ, et al. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts
[J].J Cell Sci,1995,108 (4):1563-1573.
[9] Fox P, Pogson S, Sutcliffe CJ, et al. Interface interactions between porous titanium/tantalum coatings, produced by Selective Laser Melting (SLM), on a cobalt-chromium alloy
[J].Surface Coatings Techonlogy, 2008, 202(20):5001-5007.
[10] Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
[J].Biomaterials, 2006, 27(18):3413-3431.
[11] Xiong JY, Li YC, Wang XJ, et al. Titanium–nickel shape memory alloy foams for bone tissue engineering
[J]. J Mech Behav Biomed Mater, 2008,1(3):269-273.
[12] Oh IH, Nomura N, Masahashi N, et al. Mechanical properties of porous titanium compacts prepared by powder sintering
[J]. Scripta Materialia, 2003, 49(12):1197-1202.
[13]Moroni A, Caja VL, Egger EL. et al. Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants
[J] .Biomaterials,1994, 15(11): 926-930.
[14] Sberveglieri G, Comini E, Faglia G, et al.Titanium dioxide thin films prepared for alcohol microsensor applications
[J].Sensors and Actuators B: Chemical,2000,66(1-3):139-141.
[15] 奚正平,汤慧萍,王建永,等.金属多孔材料力学性能的研究
[J].稀有金属材料与工程, 2007, 36(3):555-558.稀有金属材料与工程.
深圳市科技计划项目资助(201002043); 广东省科技计划项目资助(2010B031600028)
/
〈 |
|
〉 |