第Ⅲ代经口寰枢椎复位钢板系统三维稳定性评价
Three-dimensional Stability of Type Ⅲ Transoral Atlantoaxial Reduction Plate (TARP) System
目的 对比经口寰枢椎复位钢板固定系统(TARP)与后路椎弓根钉棒固定系统的三维生物力学稳定性,为临床应用提供实验依据。 方法 6具新鲜上颈椎尸体标本(C0~3),随机分为正常组、 TARP组、后路钉棒组。每组标本均利用美国魔神运动分析技术公司步态分析系统(Motion Analysis, co. 6Eagle系统)测量屈伸、侧屈、旋转各个方向的运动范围(ROM),并进行统计学分析。 结果 前路TARP钢板组与后路椎弓根钉棒组在屈伸、侧屈、旋转各个方向上与完整标本差异显著。前路TARP钢板组与后路椎弓根钉棒组在屈伸、侧屈、旋转各个方向均无显著差异。 结论 前路TARP固定系统具有与后路椎弓根钉棒固定系统相当的三维稳定性,具有良好的生物力学性能,前路TARP系统可作为寰枢椎可靠内固定的选择方法之一。
Objective To compare the in vitro biomechanics of Type Ⅲ Transoral Atlantoaxial Reduction Plate(TARP) system, with that of conventional posterior atlantoaxial pedicle screw-rods system, and provide biomechanical basis for clinical application. Methods 6 fresh-frozen human cadaveric cervical spines with occiput (C0~3) were used. Three different groups were examined: (1) control group (intact) (n= 6); (2) TARP group (n= 6); (3) pedicle screw-rods group (n= 6). All specimens were evaluated in flexion-extension, left-right bending, and left-right axial rotation with Motion Analysis in a cadaveric C1-2 fixation model with a nondestructive flexibility method using a nonconstrained skill. Results Stiffness in any direction was significantly higher in the TARP group and pedicle screw-rod group than in control group (intact). The difference in stiffness between the TARP group and pedicle screw-rod group was not statistically significant. Conclusions Experimentally, the TARP-Ⅲ system fixation and pedicle screw-rods fixation methods were significantly stiffer than the control group. The anterior TARP-Ⅲ system provided stiffness equal to posterior pedicle screw-rods fixation. Therefore, TARP-Ⅲ system seems reasonable that the reliable and rigid fixation would be the method of choice.
Atlantoaxial / Anterior approach / Posterior approach / Internal fixation / Bionmechanics
[1] 尹庆水,艾福志, 夏虹,等.经口咽前路寰枢椎蝶形钢板系统的设计及生物力学评估
[J].中华实验外科杂志, 2004,21(1):65-67.
[2] 谭明生,移平,王文军,等.经寰椎“椎弓根”内固定技术的临床应用
[J].中国脊柱脊髓杂志,2006,16(5): 336-340.
[3] 彭新生,潘滔,陈立信,等.牵引与后路枕颈复位固定治疗寰椎枕骨化并颅底凹陷症
[J].中国脊柱脊髓杂志, 2008,18( 1): 45-49.
[4] Wang C, Yan M, Zhou HT, et al. Open reduction of irreducible atlantoaxial dislocation by transoral anterior atlantoaxial release and posterior internal fixation
[J].Spine,2006,31 (11):306-313.
[5] 艾福志,尹庆水,夏虹,等.经口咽前路寰枢椎复位钢板固定的三维运动稳定性和抗拔出力研究
[J].解放军医学杂志,2004,29(3):223-225.
[6] 马向阳,尹庆水,吴增晖,等.寰枢椎后路四种钉棒固定方法的三维稳定性评价
[J].中国脊柱脊髓杂志,2008, 18( 6): 464-468.
[7] Subin BS, Liu JF, Marshall GJ, et al. Transoral anterior decompression and fusion of chronic irreducible atlantoaxial dislocation with spinal cord compression
[J].Spine,1995,20(11):1233-1240.
[8] Dai LY, Yuan W, Ni B, et al. Surgical treatment of nonunited fractures of the odontoid process, with special reference to occipitocervical fusion for unreducible atlantoaxial subluxation or instability
[J]. Eur Spine J,2000,9(2):118-122.
[9] Dickman CA, Locantro J, Fessler RG. The in?uence of transoral odontoid resection on stability of the craniovertebral junction
[J]. J Neurosurg,1992,77(4):525-530.
[10]Govender S, Kumar KPS. Staged reduction and stabilization in chronic atlantoaxial rotatory xation
[J]. J Bone Joint Surg, 2002, 84(5):727-731.
[11]Goel A, Laheri V. Plate and screw fixation for atlantoaxial subluxation
[J]. Acta Neurochir(Wien), 1994, 129(1): 47-53.
[12]Harms J, Meleher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation
[J].Spine,2001,26 (22):2467-2471.
[13]Park J, Scheer JK, Lim TJ, et al. Biomechanical analysis of Goel technique for C1–2 fusion, Laboratory investigation
[J].J Neurosurg Spine,2011,14(5):639-646.
[14]Resnick DK, Benzel EC. Cl-C2 pedicle screw fixation with rigid cantilever beam construct case report and technical note
[J]. Neurosurgery, 2002, 50(2): 426-428.
[15]吴增晖,郑轶,章凯,等.经口前路枢椎椎弓根螺钉固定的临床应用解剖学
[J].中国临床解剖学杂志,2009,27(5):505-507.
[16]吴 峰,尹庆水. 经口咽前路寰枢椎复位钢板螺钉固定强度的生物力学评价
[J].中国临床解剖学杂志,2010,28(5):575-577.
全军“十二五”重点项目(BWS11C065)
/
〈 |
|
〉 |