腰椎峡部裂机翼型记忆合金固定装置的有限元分析
朱立新, 王健, 曹延林, 樊望驹, 于郭吉, 张西兵, 叶文明
中国临床解剖学杂志 ›› 2012, Vol. 30 ›› Issue (3) : 333-336.
腰椎峡部裂机翼型记忆合金固定装置的有限元分析
The finite element analysis of Aerofoil shape memory alloy fixation instrument for surgically treating spondylolysis
目的 以正常人体CT影像数据为基础,建立腰椎峡部裂弹性固定有限元模型,分析内固定器受力并对其进行改进。 方法 采用分辨率0.625 mm薄层CT扫描数据,导入 Mimics10.0软件建立三维几何面网格模型,通过Geomagic studio12.0、HyperMesh 10.0前处理,最终导入Abaqus10.1软件生成腰椎峡部裂记忆合金固定模型,并在椎体上表面施加500N压力和7.5 Nm力矩,模拟前屈、后伸、侧屈和旋转四种生理载荷,观察并比较不同载荷下固定装置的应力分布。 结果 机翼型记忆合金固定装置应力集中于侧翼,尤其是侧翼和底座的接合部位,后伸和旋转时最大,容易导致疲劳性断裂。 结论 提高镍钛合金材料质量和工艺水准,术后延长腰围保护时间,以避免机翼型记忆合金固定装置断裂的风险。
Objective To establish the three-dimensional finite element model (FEM) with the bilateral pars defect and reconstruct by AEROFOIL fixation. Methods According to spiral CT scan images of 0.625 mm thickness,finite element model of lumbosacral vertebrae was established using Mimics10.01, Geomagic studio12.0, HyperMesh 10.0 and Abaqus10.1 software. Moreover, it's validity had been verified and then imported the AEROFOIL fixation. The reconstructed model was analyzed under 500N pressure loading on the upper surface of L1, and 7.5Nm torque loading for simulating axial compression and flexion, extension, lateral bending and rotation. The Von mises stress of fixation were recorded and analyzed. Results It showed that high stress concentrated at the bottom part of the swings, especially at the junction of the swings and the U-shape base. Extension and axial rotation motion resulted in breakage of the AEROFOIL fixation. Conclusions Improving Nitinol material quality and process standards and suitably prolonging the need for external bracing are necessary for reducing the higher risk of fracture on fixation devices.
Lumbosacral spine / Spondylolysis / Fixation devices / Finite element analysis
[1] Micheli LJ, Wood R. Back pain in young athletes: signi?cant differences from adults in causes and patterns
[J]. Adolesc Med, 1995, 14(9): 15-18.
[2] Buck JE, Direct repair of the defect in spondylolisthesis.Preliminary report
[J].J Bone Joint Surg Br, 1970, 52(3):432-437.
[3] Nicol RO, Scott JHS Lytic spondylolysis repair by wiring
[J]. Spine,1986, 11(10):1027-1030.
[4] Hefti F, Seelig W, Morscher E. Repair of lumbar spondylolysis with a hook-screw
[J]. Spine, 1986, 11(10): 1027-1030.
[5] Antonius Rohlmann, Hadi Nabil Boustani, Georg Bergmann, et al. Effects of nonlinearity in the material used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.
[J]. Journal of Biomechanics, 2010, 43(3): 2963–2969.
[6] 张西兵,朱立新,王健, 等. 腰椎峡部裂机翼型记忆合金节段内固定器研制的解剖学基础
[J]. 中国临床解剖杂志, 2011, 29(4): 407-410.
[7] Tsuang YH, Chiang YF, Hung CY, et al. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-a finite element study
[J]. Med Eng Phys, 2008, 31(5): 565-570.
[8] Rohlmann A, Zander T,Rao M, et al. Realistic loading conditions for upper body bending
[J]. J Biomech, 2009, 42(7): 884-890.
[9] White AA 3rd, Panjabi MM. The basic kinematics of the human spine. A review of past and current knowledge
[J]. Spine,1978, 3(1):12-20.
[10]张建发,刘南礼,朱表安,等. 腰椎三维运动范围的实验研究
[J]. 深圳医学, 1997, 10(3): 1-2.
[11] Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis
[J]. Med Eng Phys, 2008, 30(10): 1287-1304.
[12] Long M, Rack HJ. Titanium alloys in total joint replacement a material science perspective
[J]. Biomaterials, 1998, 19(18): 1621-1639.
[13] Miyazaki S, Ohmi Y, Otsuka K, et al. Characteristics of deformation and transformation pseudoelastieity in Ti-Ni alloys
[J]. De Pysique, 1982, 15(C4): 255-260.
[14] Buehler WJk, Gilfrich JV, Wiley RC. Effect of low temperature Phase changes on the mechanical Properties of alloys near composition TiNi
[J]. Journal of Applied Physics, 1963, 34:1475-1477.
[15] 卢世壁,王继芳,郭锦芳,等. 镍钛形状记忆合金在脊柱侧弯症矫形的应用
[J]. 中华外科杂志, 1986, 24: 129.
[16] 张春才,刘植珊,高建章,等. 髌骨内固定形状记忆整复器的设计与临床应用
[J]. 中华外科杂志, 1989, 27(11):692-695.
[17] 张辉,靳安民,张美超. 腰椎峡部裂记忆合金节段内固定器的有限元分析
[J]. 第一军医大学学报, 2002, 22(12): 1128-1130.
[18] Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine
[J]. Med Eng Phys, 2001, 23(7):483-491.
[19] Castellvi AE, Huang H, Vestgaarden T, et al. Stress reduction in adjacent level discs via dynamic instrumentation: a finite element analysis
[J]. SAS Journal, 2007, 25(1):74-81.
[20] Chosa E,Totoribe K,Tajima N. A biomechanical study of lumbar spondylolysis based on a three- dimensional finite element method
[J]. Orthopaedic Research, 2004, 22(1): 158-163.
[21]Kim K, Lee SK, Kim YH. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis
[J]. Proc Inst Mech Eng H, 2010 ,224(10):1165-1174.
[22]Schmidt H, Shirazi-Adl A, Galbusera F, et al. Response analysis of the lumbar spine during regular daily activities--a finite element analysis
[J]. Biomechanics, 2010, 43(10):1849-1856.
/
〈 |
|
〉 |