应用破骨细胞-颅骨联合培养体系研究先天性成骨不全的骨再建过程
张 浩, 钟招明, 袁 凯, 陈国仙, 李郅涵, 陈建庭
中国临床解剖学杂志 ›› 2011, Vol. 29 ›› Issue (4) : 442-445.
应用破骨细胞-颅骨联合培养体系研究先天性成骨不全的骨再建过程
The remodeling evaluation of osteopsathyrosis congenita adopting osteoclast-calvaria co-culture system in vitro
目的 采用先天性成骨不全(OI)小鼠,oim/oim为动物模型,应用破骨细胞-颅骨联合培养体系研究OB和OC两种细胞在OI骨再建过程中的功能改变和相互作用。 方法 实验采用小鼠颅骨(CAL)组织培养,实验设两组:WTCAL-WTOC组:联合培养对照组颅(WTCAL) 与对照破骨细胞(WTOC);OICAL-OIOC组:联合培养OI颅骨(OICAL)与OI破骨细胞(OIOC)。以免疫组化染色方法 -TRAP识别破骨细胞,ALP免疫组化染色方法识别成骨细胞。破骨细胞骨吸收活性为骨吸收陷窝占颅骨表面百分比。单位OC吸收面积为总骨吸收陷窝除以破骨细胞数。 结果 于7d,OICAL-OIOC组破骨细胞数低于WTCAL-WTOC组;OICAL-OIOC组的OC/OB比例低WTCAL-WTOC组;OICAL-OIOC组单位破骨细胞吸收能力高于WTCAL-WTOC组。 结论 OI的小鼠模型骨再建中骨量丢失一方面由于其成骨细胞功能异常,另一方面也可能因为其破骨细胞的代偿性功能活跃。
Objective To evaluate the effects of osteoblast (OB) and osteoclast (OC) on the bone remodeling of osteogenesis imperfecta (OI) adopting osteoclast-calvaria co-culture system in vitro on oim/oim (OI) mouse model. Methods Wild (WT) and OI mice were used and compared in this study. OC cells were cultured in calvaria (CAL) in vitro for WT (WTCAL-WTOC group) and OI mice (OICAL-OIOC group) respectively. Tartrate-resistant acid phosphatase (TRAP) staining and alkaline phosphatase (ALP) staining were used to identify OCs and OBs respectively. Bone resorption of OCs was assessed by the area percentage of absorption lacunam, which is the rate of OCs number to the whole calvarial surfaces. Results At the culturing time of d7, the number of OCs and OC/OB rate of group OICAL-OIOC were significantly lower than that of group WTCAL-WTOC. However, the OCs number normalized to resorption pit number was significantly greater in group OICAl-OIOC compared to that of WTCAl-WTOC group. Conclusions The mechanism of the increased OCs function is partially due to the increased bone turnover in OI mice model for the compensation of decreased OBs function.
  / 破骨细胞 / 骨再建 / 先天性成骨不良 / 破骨细胞-颅骨联合培养模型
Osteoclast / Bone remodeling / Osteogenesis imperfecta / Osteoclast-calvaria co-culture system
[1] Roughley PJ, Rauch F, Glorieux FH. Osteogenesis imperfecta--clinical and molecular diversity
[J]. Eur Cell Mater, 2003,30(5): 41-47.
[2] Rauch F, Glorieux FH. Treatment of children with osteogenesis imperfecta
[J]. Curr Osteoporos Rep, 2006, 4(4):159-164.
[3] Zeitlin L, Fassier F, Glorieux FH. Modern approach to children with osteogenesis imperfecta
[J]. J Pediatr Orthop B, 2003, 12(2):77-87.
[4] Rauch F, Travers R, Parfitt AM,et al. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta
[J]. Bone, 2000, 26(6):581-589.
[5] Iwamoto J, Takeda T, Ichimura S. Increased bone resorption with decreased activity and increased recruitment of osteoblasts in osteogenesis imperfecta type I
[J]. J Bone Miner Metab, 2002,20(3):174-179.
[6] Zhang H, Doty SB, Dempster D, et al. Increased Early Resorption Activity and Alterations of Morphology in Osteoclasts Derived from the oim/oim Mouse Model of Osteogenesis Imperfecta (oim/oim)
[J]. J Cell Biol, 2007,102(4):1011-1020.
[7] Chipman SD, Sweet HO, McBride DJ Jr, et al. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfect
[J]. Gene Therapy,1993,90(5):1701-1705.
[8] Stern PH, Krieger NS. Comparison of fetal rat limb bones and neonatal mouse calvaria: effects of parathyroid hormone and 1,25-dihydroxyvitamin D3
[J]. Calcif Tissue Int, 35(2):172-176.
[9] Hefley TJ, Krieger NS, Stern PH. Simultaneous measurement of bone resorption and collagen synthesis in neonatal mouse calvaria
[J]. Anal Biochem, 1986, 153(1):166-171.
[10] Murrills RJ, Stein LS, Fey CP, et al. The effects of parathyroid hormone (PTH) and PTH-related peptide on osteoclast resorption of bone slices in vitro: an analysis of pit size and the resorption focus
[J]. Endocrinology, 1990,127(6):2648-2653.
[11] Andersson MK, Lundberg P, Ohlin A, et al. Effects on osteoclast and osteoblast activities in cultured mouse calvarial bones by synovial fluids from patients with a loose joint prosthesis and from osteoarthritis patients
[J]. Arthritis Res Ther, 2007,9(1):R18.
[12] Kusano K, Miyaura C, Inada M, et al. Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption
[J].Endocrinology, 1998,139(3):1338-1345.
[13] Baron R, Gertner JM, Lang R, et al. Increased bone turnover with decreased bone formation by osteoblasts in children with osteogenesis imperfecta tarda
[J]. Pediatr Res, 1983,17(3):204-207.
[14] Jones SJ, Glorieux FH, Travers R, et al. The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging
[J]. Calcif Tissue Int, 1999,64(1):8-17.
[15] Cepollaro C, Gonnelli S, Pondrelli C, et al. Osteogenesis imperfecta: bone turnover, bone density, and ultrasound parameters
[J]. Calcif Tissue Int, 1999, 65(2):129-132.
[16] McCarthy EF, Earnest K, Rossiter K, et al. Bone histomorphometry in adults with type IA osteogenesis imperfecta
[J]. Clin Orthop Relat Res, 1997, 336:254-262.
[17] Munns CF, Rauch F, Travers R, et al. Effects of intravenous pamidronate treatment in infants with osteogenesis imperfecta: clinical and histomorphometric outcome
[J]. J Bone Miner Res, 2005, 20(7):1235-1243.
[18] Rauch F, Travers R, Plotkin H,et al. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta
[J]. J Clin Invest, 2002, 110(9):1293-1293.
[19]Ste-Marie LG, Charhon SA, Edouard C, et al. Iliac bone histomorphometry in adults and children with osteogenesis imperfecta
[J]. J Clin Pathol, 1984, 37(10):1081-1089.
[20]Kacena MA, Gundberg CM, Horowitz MC. A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells
[J]. Bone, 2006, 39(5):978-984.
[21]Shapiro JR, McBride DJ Jr., Fedarko NS. OIM and related animal models of osteogenesis imperfecta
[J]. Connect Tissue Res, 1995,31(4):265-268.
[22]Cao J, Venton L, Sakata T,et al. Expression of RANKL and OPG Correlates with age-related bone loss in male C57BL/6 mice
[J]. J Bone Miner Res, 2003, 18(2): 270-277.
国家自然科学基金资助项目(30973070)
/
〈 |
|
〉 |