血管铸型技术检测组织工程多孔支架血管化的实验研究

武延格, 杨 林, 孙学峰, 王 正

中国临床解剖学杂志 ›› 2011, Vol. 29 ›› Issue (1) : 87-88.

中国临床解剖学杂志 ›› 2011, Vol. 29 ›› Issue (1) : 87-88.
实验研究

血管铸型技术检测组织工程多孔支架血管化的实验研究

  • 武延格, 杨 林, 孙学峰, 王 正
作者信息 +

Experimental study on revascularization detection in tissue engineered scaffold using vascular cast technique

  • WU Yan-ge, YANG Lin , SUN Xue-feng, WANG Zheng
Author information +
文章历史 +

摘要

目的 探索利用血管铸型技术观察组织工程多孔支架体内再血管化情况的可行性。 方法 将DegraPol多孔管状支架置入SD大鼠腹腔大网膜包埋1周,应用解剖学中的血管铸型技术,观察组织工程支架体内形成新生血管的情况。 结果 大网膜包埋后在DegraPol支架外部发现有较多的蓝色显影微细血管环绕,在微孔支架内部,蓝色显影穿透支架并沿支架内孔分布。 结论 血管铸型适合用于微血管检测,可作为组织工程人工器官再血管化检测的一种新方法。

Abstract

Objective To explore the feasibility of vascular cast for revascularization of tissue engineered organ. Method Tissue engineered scaffolds DegraPol were implanted in rat omental 1 weeks. The anatomic technology of vascular cast was used to observe revascularization of DegraPol scaffold. Results  Vascular cast showed more blue vessels around the DegraPol scaffold in omental implants. Micro-vessels were found grew into the porous scaffold. Conclusions Vascular cast technique is suitable for detecing the microvascular, and could be used as a new method to observe revascularization of tissue engineered organ.

关键词

血管铸型 / 组织工程 / 支架 / 再血管化

Key words

 Vascular cast / Tissue-engineering / Scaffold / Revascularization

引用本文

导出引用
武延格, 杨 林, 孙学峰, 王 正. 血管铸型技术检测组织工程多孔支架血管化的实验研究[J]. 中国临床解剖学杂志. 2011, 29(1): 87-88
WU Yan-Ge, YANG  Lin, SUN Xua-Feng, WANG  Zheng. Experimental study on revascularization detection in tissue engineered scaffold using vascular cast technique[J]. Chinese Journal of Clinical Anatomy. 2011, 29(1): 87-88
中图分类号: Q819   

参考文献


[1] Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities
[J]. Science, 2002, 295(8): 1009-1014.

[2]   张 晔, 曾秉芳. 组织工程与血管形成
[J]. 国外医学骨科分册, 2003, 24(6): 363-367.

[3]  曾宪利, 裴国献. 组织工程骨血管化机理及策略的研究进展. 实用手外科杂志,2005, 19(3): 193-195.

[4]  Bouhadir KH, Mooney DJ. Promoting angiogenesis in engineered tissues
[J]. J Drug Target, 2001, 9(6): 397-406.

[5]  Sahota PS, Burn JL, Heaton M, et al. Development of a reconstructed human skin model for angiogenesis
[J]. Wound Repair Regen, 2003, 11(4): 275-284.

[6]  Wenger A, Stahl A, Weber H, et al. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering
[J]. Tissue Eng, 2004, 10(9-10): 1536-1547.

[7]  Suh S, Kim J, Shin J, Kil K. Use of omentum as an in vivo cell culture system in tissue engineering
[J]. ASAIO J, 2004, 50(5): 464-467.

[8]  Patrick CW Jr, Chauvin PB, Hobley J. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering
[J]. Tissue Eng, 1999,5(2): 139-151.

[9]  Philippe P, Franck Villars, Simone MP. Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats
[J]. Plast Res Surg,2003,111(6): 1932-1941.

[10]Neumann T, Nicholson BS, Sanders JE. Tissue engineering of perfused microvessels
[J]. Microvasc Res,2003,66(1): 59-67.

[11]王学明, 裴国献. 组织工程骨血管化的监测
[J]. 中华创伤骨科, 2004, 6(7): 822-824.

[12]Ribatti D, Nico B, Vacca A, et al. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and antiangiogenesis in vivo
[J]. Anat Rec, 2001, 264 (4):317-324.

[13]Borges J, Tegtmeier FT, Padron NT, et al. Chorioallantoic membrane angiogenesis model for tissue engineering: A new twist on a classic model
[J]. Tissue Eng, 2003,9(3):441-450.

基金

国家自然科学基金资助(30500499)


Accesses

Citation

Detail

段落导航
相关文章

/