目的 探讨丁香酚调控硫氧还蛋白互作蛋白/硫氧还蛋白/谷胱甘肽过氧化物酶4(TXNIP/TRX-1/GPX4)通路介导的铁死亡对血管性痴呆(VD)大鼠术后认知功能障碍的影响。 方法 将大鼠随机分为模型组、丁香酚低剂量组、丁香酚高剂量组、丁香酚高剂量+OE-NC组、丁香酚高剂量+OE-TXNIP组,每组12只。除对照组外,其余组别均构建VD模型。水迷宫实验检测大鼠认知功能;ELISA检测海马组织丙二醛(MDA)和还原型谷胱甘肽(GSH)含量;尼氏染色法及HE染色观察海马CA1区神经元形态;普鲁士蓝染色观察海马组织铁沉积;免疫组化检测铁死亡蛋白GPX4、溶质载体家族7成员11(SLC7A11)表达;Western blot检测海马组织TXNIP/TRX-1/GPX4通路相关蛋白表达。 结果 模型组较对照组海马组织病理损伤严重,CA1区神经元细胞形态不规则,胞体水肿、胞核固缩现象明显,细胞间隙增大、边界模糊,神经元排列稀疏、紊乱,丢失明显,尼氏体明显减少,铁颗粒沉积增加,大鼠平均逃避潜伏期增加,穿越平台次数减少,MDA含量及TXNIP表达升高,GSH含量及SLC7A11、TRX-1、GPX4表达降低(P<0.05);丁香酚低剂量组、丁香酚高剂量组较模型组海马组织及CA1区神经元损伤明显改善,铁颗粒沉积减少,平均逃避潜伏期减短,穿越平台次数增多,MDA含量及TXNIP表达降低,GSH含量及SLC7A11、TRX-1、GPX4表达升高(P<0.05);丁香酚高剂量+OE-TXNIP组部分逆转了丁香酚对海马组织的保护作用。 结论 丁香酚可改善血管性痴呆大鼠术后认知功能障碍,与抑制TXNIP/TRX-1/GPX4通路介导的铁死亡相关。
Abstract
Objective To investigate the effect of eugenol on postoperative cognitive dysfunction in vascular dementia (VD) rats via modulation of thioredoxin-interacting protein/thioredoxin-1/glutathione peroxidase 4 (TXNIP/TRX-1/GPX4) pathway-mediated ferroptosis. Methods The rats were randomly divided into control group, model group, low-dose eugenol group, high-dose eugenol group, high-dose eugenol+OE-NC group, and high-dose eugenol+OE-TXNIP group, with 12 rats in each group. Except for control group, VD models were constructed in all other groups. The water maze experiment was used to exam the cognitive function of rats. ELISA was used to detect the contents of malondialdehyde (MDA) and reduced glutathione (GSH) in hippocampal tissue. Nissl staining and HE staining were used to observe the morphology of neurons in hippocampal CA1 area. Prussian blue staining was used to observe iron deposition in hippocampal tissue. Immunohistochemistry was used to detect the expressions of ferroptosis protein GPX4 and solute carrier family 7 member 11 (SLC7A11). Western blot was used to detect the expression of proteins related to TXNIP/TRX-1/GPX4 pathway in hippocampal tissues. Results Compared with control group, the pathological damage of hippocampal tissue in model group was severe. The morphology of neuronal cells in hippocampal CA1 area was irregular, with obvious phenomena of cell edema and nuclear condensation, enlarged cell gaps, blurred boundaries, disordered arrangement, obvious neuronal loss, significant reduction of Nissl body, and increased deposition of iron particles. The rats of model group had increased average escape latency, and decreased number of crossing platforms (P<0.05). The content of MDA and the expression of TXNIP were increased, while the content of GSH and the expressions of SLC7A11, TRX-1, and GPX4 were decreased in model group (P<0.05). Compared with model group, hippocampal tissue and neuronal damage in CA1 area in low-dose eugenol group and high-dose eugenol group were significantly improved, iron particle deposition was reduced, the average escape latency was shortened, the number of crossing platforms increased. Meanwhile, MDA content and TXNIP expression were decreased. The content of GSH and the expressions of SLC7A11, TRX-1, and GPX4 were increased in two group (P<0.05). In addition, high-dose eugenol+OE-TXNIP group partially reversed the protective effect of eugenol on the hippocampal tissue. Conclusions Eugenol can improve postoperative cognitive dysfunction in VD rats and is associated with the inhibition of ferroptosis mediated by TXNIP/TRX-1/GPX4 pathway.
关键词
丁香酚 /
  /
  /
TXNIP/TRX-1/GPX4通路 /
  /
  /
铁死亡 /
  /
  /
血管性痴呆 /
  /
  /
术后认知功能障碍
Key words
Eugenol /
  /
  /
TXNIP/TRX-1/GPX4 pathway /
  /
  /
Ferroptosis /
  /
  /
Vascular dementia /
Postoperative cognitive dysfunction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jiménez-Ruiz A, Aguilar-Fuentes V, Becerra-Aguiar NN, et al. Vascular cognitive impairment and dementia: a narrative review[J]. Dement Neuropsychol, 2024, 18: e20230116. DOI: 10.1590/1980-5764-DN-2023-0116.
[2] Bir SC, Khan MW, Javalkar V, et al. Emerging concepts in vascular dementia: a review[J]. J Stroke Cerebrovasc Dis, 2021, 30(8): 105864. DOI: 10.1016/j.jstrokecerebrovasdis.2021.105864.
[3] Morgan AE, Mc Auley MT. Vascular dementia: from pathobiology to emerging perspectives[J]. Ageing Res Rev, 2024, 96: 102278. DOI: 10.1016/j.arr.2024.102278.
[4] Mok VCT, Cai Y, Markus HS. Vascular cognitive impairment and dementia: mechanisms, treatment, and future directions[J]. Int J Stroke, 2024, 19(8): 838-856. DOI: 10.1177/17474930241279888.
[5] Ji Y, Zheng K, Li S, et al. Insight into the potential role of ferroptosis in neurodegenerative diseases[J]. Front Cell Neurosci, 2022, 16: 1005182. DOI: 10.3389/fncel.2022.1005182.
[6] Li Y, Zhang E, Yang H, et al. Gastrodin ameliorates cognitive dysfunction in vascular dementia rats by suppressing ferroptosis via the regulation of the Nrf2/Keap1-GPx4 signaling pathway[J]. Molecules, 2022, 27(19): 6311. DOI: 10.3390/molecules27196311.
[7] 张新月, 刘晨萌, 马瑜徽, 等. TXNIP/Trx-1/GPX4通路促进新生大鼠缺氧缺血后海马神经元铁死亡的作用机制[J]. 中国当代儿科杂志, 2022, 24(9): 1053-1060. DOI: 10.7499/j.issn.1008-8830.2205149.
Zhang XY, Liu CM, Ma YH, et al. The TXNIP/Trx-1/GPX4 pathway promotes ferroptosis in hippocampal neurons after hypoxia-ischemia in neonatal rats[J]. Chinese Journal of Contemporary Pediatrics, 2022, 24(9): 1053-1060. DOI: 10.7499/j.issn.1008-8830.2205149.
[8] Mohanram Ramkumar K, Thasu Susindran O, Ganesh GV, et al. Luciferase-based reporter system for investigating GPx4-mediated ferroptosis and its therapeutic implications in diabetes[J]. Anal Chem, 2025, 97(2):1059-1069. DOI: 10.1021/acs.analchem.4c03065.
[9] Jung MJ, Kim N, Jeon SH, et al. Eugenol relieves the pathological manifestations of Alzheimer's disease in 5×FAD mice[J]. Phytomedicine,2023,118:154930. DOI:10.1016/j.phymed.2023. 154930.
[10]谢紫薇, 陈盼, 李娜, 等. 运动预处理联合电针对血管性痴呆大鼠学习记忆能力及海马神经元铁死亡的影响[J]. 中国病理生理杂志, 2024, 40(10): 1934-1942. DOI: 10.3969/j.issn.1000-4718.2024.10.018.
Xie ZW, Chen P, Li N, et al. Effects of exercise preconditioning combined with electroacupuncture on learning memory capacity and hippocampal neuronal ferroptosis in rats with vascular dementia[J]. Chinese Journal of Pathophysiology, 2024, 40(10): 1934-1942. DOI: 10.3969/j.issn.1000-4718.2024.10.018.
[11]陈婕, 唐鑫, 陈盼, 等. 基于改良大鼠双侧颈总动脉结扎法建立血管性痴呆模型探讨脑血流量变化规律及对血管新生相关蛋白的影响[J]. 中国实验动物学报, 2023, 31(11):1423-1430. DOI: 10.3969/j.issn.1005-4847.2023.11.006.
Chen J, Tang X, Chen P, et al. Investigating cerebral blood flow dynamics and the impact on angiogenesis-related proteins in a modified bilateral common carotid artery ligation rat model of vascular dementia[J]. Acta Laboratorium Animalis Scientia Sinica, 2023, 31(11): 1423-1430. DOI: 10.3969/j.issn.1005-4847.2023.11.006.
[12]张雯, 刘江华, 金海涛. 积雪草苷调节TXNIP/NLRP3信号通路对缺血性脑卒中大鼠血脑屏障损伤的影响[J]. 河北医药, 2025, 47(2): 223-227. DOI: 10.3969/j.issn.1002-7386.2025.02.008.
Zhang W, Liu JH, Jin HT. Effect of asiaticoside on the blood-brain barrier injury in ischemic stroke rats by regulating the TXNIP/NLRP3 signaling pathway[J]. Hebei Medical Journal, 2025, 47(2): 223-227. DOI: 10.3969/j.issn.1002-7386.2025.02.008.
[13]贺莎莎, 刘进友, 李书剑, 等. 抑制铁死亡改善血管性痴呆大鼠认知功能的作用与机制研究[J]. 中国实用神经疾病杂志, 2021, 24(15): 1289-1298. DOI: 10.12083/SYSJ.2021.15.030.
He SS, Liu JY, Li SJ, et al. Inhibition of ferroptosis alleviates dysfunction in rats with vascular dementia [J]. Chinese Journal of Practical Nervous Diseases, 2021, 24(15): 1289-1298. DOI: 10.12083/SYSJ.2021.15.030.
[14]Yin YL, Liu YH, Zhu ML, et al. Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway[J]. Physiol Behav, 2022, 249: 113777. DOI: 10.1016/j.physbeh.2022.113777.
[15]Dhaliwal N, Dhaliwal J, Singh A, et al. Dimethyl fumarate attenuates 2-VO-induced vascular dementia via activating the Nrf2 signaling pathway in rats[J]. Inflammopharmacology, 2021, 29(2):537-547. DOI: 10.1007/s10787-020-00785-5.
[16]Liu Y, Wan Y, Jiang Y, et al. GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188890. DOI: 10.1016/j.bbcan.2023.188890.
[17]Ming M, Hu W, Xie G, et al. Dendrobium nobile polysaccharides attenuates ferroptosis and improves cognitive function in vascular dementia rats[J]. Am J Alzheimers Dis Other Demen, 2023, 38: 15333175231185236. DOI: 10.1177/15333175231185236.
[18]Jin WJ, Zhu XX, Luo KT, et al. Enhancement of cognitive function in rats with vascular dementia through modulation of the Nrf2/GPx4 signaling pathway by high-frequency repetitive transcranial magnetic stimulation[J]. Physiol Res, 2024, 73(5): 857-868. DOI: 10.33549/physiolres.935330.
[19]Gao W, Li Z, Yang C, et al. Silencing of activating transcription factor 3 alleviates oxidative stress and inflammation and improves cognitive dysfunction in vascular dementia rats by repressing ferroptosis[J]. Int Immunopharmacol, 2025,158:114730. DOI: 10.1016/j.intimp.2025. 114730.
[20]Ma J, Zhong X, Li Z, et al. Di-Dang-Tang suppresses ferroptosis in the hippocampal CA1 region by targeting PGK1/NRF2/GPX4 signaling pathway to exert neuroprotection in vascular dementia[J]. Int Immunopharmacol, 2025,150:114233. DOI:10.1016/j.intimp.2025. 114233.
[21]Cheng J, Ma X, Tao J, et al. Neuroprotective effects of ethanol extraction from Rubia yunnanensis Diels on chronic cerebral hypoperfusion: modulation of the System Xc-/GSH/GPX4 axis to alleviate oxidative stress and ferroptosis[J]. Front Pharmacol, 2025, 16: 1552228. DOI: 10.3389/fphar.2025.1552228.
[22]Goyal A, Solanki A, Verma A. Preclinical evidence-based review on therapeutic potential of eugenol for the treatment of brain disorders[J]. Curr Mol Med, 2023, 23(5): 390-400. DOI: 10.2174/15665240226 66220525145521.
[23]Adefegha SA, Okeke BM, Oboh G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer's diseases-in vitro[J]. J Food Biochem, 2021, 45(3): e13276. DOI: 10.1111/jfbc.13276.
[24]Parween N, Jabeen A, Prasad B. Eugenol elicits prolongevity by increasing resistance to oxidative stress in C. elegans[J]. CNS Neurol Disord Drug Targets, 2022, 21(9): 841-853. DOI: 10.2174/187152732 0666211008150347.
[25]Tsubaki H, Tooyama I, Walker DG. Thioredoxin-Interacting Protein (txnip) with focus on brain and neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(24): 9357. DOI: 10.3390/ijms21249357.
[26]Liu Y, Xue N, Zhang B, et al. Role of thioredoxin-1 and its inducers in human health and diseases[J]. Eur J Pharmacol, 2022, 919: 174756. DOI: 10.1016/j.ejphar.2022.174756.
[27]Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends Cell Biol, 2020, 30(6): 478-490. DOI: 10.1016/j.tcb.2020.02.009.
[28]Yang C, He Y, Ren S, et al. Hydrogen attenuates cognitive impairment in rat models of vascular dementia by inhibiting oxidative stress and NLRP3 inflammasome activation[J]. Adv Healthc Mater, 2024, 13(20): e2400400. DOI: 10.1002/adhm.202400400.
[29]Qiu H, Liu X. Echinacoside improves cognitive impairment by inhibiting Aβ deposition through the PI3K/AKT/Nrf2/PPARγ signaling pathways in APP/PS1 mice[J]. Mol Neurobiol, 2022, 59(8): 4987-4999. DOI: 10.1007/s12035-022-02885-5.
[30]Tan H, Fu X, Yang R, et al. Dual targeting of FSP1 and xCT: potential mechanism of anthocyanins in alleviating neuronal ferroptosis in vascular dementia[J]. Phytomedicine, 2025,142: 156608. DOI:10.1016/ j.phymed.2025.156608.
基金
黑龙江省自然科学基金项目(LH2023H052)