目的 报道一种用非接触式光学三维应变检测技术观察颈椎标本应力-应变的解剖和分析测试方法,为生物力学研究提供参考。 方法 通过对颈椎标本部位进行选取、特定结构的显露和剔除,在包埋和喷漆后,使用Aramis非接触光学应变系统对颈椎标本进行图像采集和应力-应变分析。 结果 颈椎标本侧面三维应变点数量为5397.25±723.76个,与常规方法相比明显增加,差异具有统计学意义(P<0.05);颈椎标本正面、后面的三维应变点数量存在增加趋势,但差异无统计学意义(P>0.05)。颈椎标本的椎体、椎间盘、椎间孔外口和关节突等重要结构的三维表面成像清晰,可进行多维度的应变指标分析。 结论 此方法能通过非接触光学应变系统生成完整的三维颈椎表面应变模型,可用于观察颈椎标本在力学加载过程中局部的细微应变、结构改变和运动趋势等,能够为生物力学研究提供帮助。
Abstract
Objective To introduce a kind of method exploring the stress-strain relationship on cervical cadaveric specimen by optical non-contact measurement system, and to provide reference for related biomechanical tests. Methods Cervical specimen was selected as subject. Before the test, anatomical exposure, embedding, and spraying were performed in order. The real strain under specific load was analyzed by the Aramis non-contact measurement system. Results Quantitative three-dimensional strain analysis demonstrated a statistically significant increase (P<0.05) in the number of strain points on the lateral surface of the cervical specimens (5397.25±723.76 points) compared to the conventional method. A similar increasing trend was observed on the anterior and posterior surfaces, although the difference did not reach statistical significance (P>0.05). The three-dimensional surface renderings of key cervical structures, including the vertebral body, intervertebral disc, intervertebral foramen (external opening), and facet joints, were clear and distinct, enabling comprehensive multi-dimensional strain analysis through angle, distance, and strain calculations performed by the system. Conclusions By the above method, the local and subtle strain, structure deformity, and kinetics of the cervical spine may be analyzed by optical non-contact measurement system easily, which is helpful for the related biomechanical tests.
关键词
颈椎标本 /
  /
  /
非接触光学应变系统 /
  /
  /
数字图像相关法 /
  /
  /
生物力学 /
  /
  /
实验方法
Key words
Cervical vertebra specimen /
  /
  /
Noncontact optical 3D strain measuring system /
  /
  /
Digital image correlation /
  /
  /
Biomechanics /
  /
  /
Experimental method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 欧阳钧, 钱蕾, 孙培栋. 脊柱生物力学研究的回顾与展望 [J]. 医用生物力学, 2021, 36(2): 169-176. DOI:10.16156/j.1004-7220.2021.02. 001.
Ouyang J, Qian L, Sun PD. Retrospect and prospect on researches of spine biomechanics [J]. Journal of Medical Biomechanics,2021,36(2):169-176. DOI:10.16156/j.1004-7220.2021.02.001.
[2] Costi JJ, Ledet EH, O'connell GD. Spine biomechanical testing methodologies: The controversy of consensus vs scientific evidence [J]. JOR Spine, 2021, 4(1): e1138. DOI:10.1002/jsp2.1138.
[3] Naoum S, Vasiliadis AV, Kouterimpas C, et al. Finite element method for the evaluation of the human spine: a literature overview [J]. J Funct Biomater, 2021, 12(3):43. DOI:10.3390/jfb12030043.
[4] Grassi L, Isaksson H. Extracting accurate strain measurements in bone mechanics: A critical review of current methods [J]. J Mech Behav Biomed Mater, 2015, 50: 43-54. DOI:10.1016/j.jmbbm.2015.06.006.
[5] Yoon S, Jung HJ, Knowles JC, et al. Digital image correlation in dental materials and related research: A review [J]. Dent Mater, 2021, 37(5): 758-771. DOI:10.1016/j.dental.2021.02.024.
[6] Cristofolini L, Brandolini N, Danesi V, et al. Strain distribution in the lumbar vertebrae under different loading configurations [J]. Spine J, 2013, 13(10): 1281-1292. DOI:10.1016/j.spinee.2013.06.014.
[7] Danesi V, Erani P, Brandolini N, et al. Effect of the in vitro boundary conditions on the surface strain experienced by the vertebral body in the elastic regime [J]. J Biomech Eng, 2016, 138(10). DOI:10.1115/1.4034383.
[8] Nicola B, Luca C, Marco V. Experimental methods for the biomechanical investigation of the human spine: a review [J]. Journal of Mechanics in Medicine and Biology, 2014. DOI:10.1142/S0219519414300026.
[9] Bay BK. Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone [J]. J Orthop Res, 1995, 13(2): 258-267. DOI:10.1002/jor.1100130214
[10]Lu H, Cary PD. Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient [J]. Experimental Mechanics, 2000, 40(4):393-400.DOI:10.1007/BF02326485.
[11]Poissant J, Barthelat F. A novel "subset splitting" procedure for digital image correlation on discontinuous displacement fields [J]. Experimental Mechanics, 2010, 50(3): 353-364. DOI:10.1007/s11340-009-9220-2.
[12]Tang T, Ebacher V, Cripton P, et al. Shear deformation and fracture of human cortical bone [J]. Bone, 2015, 71:25-35. DOI:10.1016/j.bone. 2014.10.001.
[13]Li J, Li Y, Ping R, et al. Biomechanical analysis of sacroiliac joint motion following oblique-pulling manipulation with or without pubic symphysis injury [J]. Front Bioeng Biotechnol, 2022, 10: 960090. DOI:10.3389/fbioe.2022.960090.
[14]Xu D, Wang Y, Jiang C, et al. Strain distribution in the anterior inferior tibiofibular ligament, posterior inferior tibiofibular ligament, and interosseous membrane using digital image correlation [J]. Foot Ankle Int, 2018, 39(5): 618-628. DOI: 10.1177/1071100717753160.
[15]Carriero A, Abela L, Pitsillides AA, Shefelbine SJ. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model[J]. J Biomech, 2014,47(10):2490-2497. DOI:10.1016/j.jbiomech. 2014.03.035.
[16]王飞, 张军, 卫杰, 等.模拟腰椎关节松动手法及冲击手法下椎间盘应变的比较[J].中国中医骨伤科杂志, 2019, 27(10):1-4, 9. DOI:CNKI:SUN:ZGZG.0.2019-10-002.
Wang F, Zhang J, Wei J, et al. Comparison of Human Lumbar Disc Strain during Simulated Spinal Manipulation versus Spinal Mobilization [J]. Chinese Journal of Traditional Medical Traumatology & Orthopedics, 2019, 27(10):1-4, 9. DOI:CNKI:SUN:ZGZG.0.2019-10-002.
[17]Freddi A, Olmi G, Cristofolini L. Experimental Stress Analysis for Materials and Structures[M]. Springer International Publishing, 2015. DOI:10.1007/978-3-319-06086-6.
[18]Schreier H, Orteu JJ, Sutton MA. Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts, Theory and Applications [M]. New York: Springer Science, 2009. DOI:10.1007/978-0-387-78747-3.
[19]Pan B. Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals [J]. Measurement Science & Technology, 2018, 29(8):082001. DOI:10.1088/1361-6501/aac55b.
基金
国家自然科学基金(82205150);中国科协青年托举人才工程(YESS20240474);中国博士后科学基金面上项目(2025M773955);广东省基础与应用基础研究基金区域联合基金项目(20201910240000337);广东省中医证候临床重点实验室课题(2023KT15480);广东省中医药新黄埔中医药联合创新研究院联合创新研究项目(2021IR008);广东省中医院中医药科学院“优秀青年人才青苗计划”(SZ2024QN03)