目的 通过显微解剖学与磁共振弥散张量成像(DTI)相结合,明确大脑外侧区域白质纤维束的解剖结构及其连接特征。 方法 选取10%甲醛固定完成的10例成人尸头(20侧大脑半球),采用Klingler纤维束固定及剥离技术,在6~40倍显微镜下进行白质纤维束的剥离。对16名健康成人志愿者进行颅脑DTI检查。观察大脑外侧的白质纤维束的显微解剖,并分析各白质纤维束之间的走行及相互关系。并进一步结合DTI,进一步明确大脑外侧白质纤维束的解剖结构与相互关系。 结果 大脑外侧存在多种白质纤维束,剥离大脑皮层灰质后,是最浅层、分布最广的“U”型纤维束,剥离“U”型束后,显露的浅层长联络纤维束是弓状束、上纵束Ⅱ、Ⅲ、额斜束;进一步显露中纵束、下纵束。剥离岛叶灰质皮层,依次显露最外囊、屏状核、外囊(包括钩束、下额枕束)、壳核、苍白球,最后到内囊。各纤维束在解剖结构上基本固定。DTI进一步验证了这些纤维束在的结构关系。 结论 显微解剖学和磁共振的协同研究明确了大脑外侧白质纤维束的走行方向及相互关系,这些发现为临床神经外科手术规划提供了理论支持,并为脑功能研究提供了重要依据。
Abstract
Objective To clarify the anatomical structures and functional connectivity characteristics of the white matter fiber tracts in the lateral region of human brain by combining microscopic anatomical techniques and diffusion tensor imaging (DTI). Methods 10 formalin-fixed adult cadaver heads (20 cerebral hemispheres in total) were selected and By using Klingler fiber dissection technique, the white matter fiber tracts were dissected under 6~40× magnification was employed. A total of 16 healthy adult volunteers underwent cranial DTI examination. The anatomical structures of lateral white matter bundles were observed their trajectories and interrelationships were analyzed. Furthermore, in combination with DTI, I the anatomical architecture and interconnections among lateral brain white matter tracts were further clarified. Results Multiple white matter fiber tracts were identified in the lateral portion of brain. After removing cortical gray matter, the most superficial and widely distributed structures revealed were short “U”-shaped association fibers. Dissecting these U-fibers exposed superficial long association tracts, including arcuate fasciculus, superior longitudinal fasciculus (SLF) II and III, and frontal aslant tract. Further dissection uncovered middle longitudinal fasciculus and inferior longitudinal fasciculus. Removing insular cortex in layers successively exposed the outermost capsule, claustrum, external capsule (including uncinate fasciculus and inferior fronto-occipital fasciculus), putamen, and globus pallidus, finally reaching internal capsule. The anatomical arrangement of each fiber tract was essentially stable. DTI data further verified these structural relationships. Conclusions The combined application of microscopic anatomical methods and DTI research allows for a clearer understanding of the orientations and interrelationships of lateral white matter fiber tracts in brain. These findings provide theoretical support for clinical neurosurgical planning and offer an important foundation for investigations into brain function.
关键词
大脑外侧;  /
  /
白质纤维束;  /
  /
显微解剖;  /
  /
磁共振弥散张量成像
Key words
Lateral hemisphere;  /
  /
White matter fiber tracts;  /
  /
Microscopic anatomy;  /
  /
DTI
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李陈, 狄广福, 李强, 等. 弓状束及上纵束的显微解剖学与功能磁共振研究[J]. 中华外科杂志, 2023, 61(11):1018-1023. DOI:10.3760/cma.j.cn112139-20230322-00120.
Li C, Di GF, Li Q, et al. Microanatomy and functional MRI study of arcuate fasciculus and superior longitudinal fasciculus[J]. Chinese Journal of Suegery, 2023, 61(11):1020-1025. DOI: 10.3760/cma.j.cn112139-20230322-00120.
[2] Yagmurlu K, Middlebrooks EH, Tanriover N,Rhoton AL, Jr. Fiber tracts of the dorsal language stream in the human brain[J]. J Neurosurg, 2016, 124(5):1396-405. DOI:10.3171/2015.5.Jns15455.
[3] Yagmurlu K, Vlasak AL, Rhoton AL, Jr. Three-dimensional topographic fiber tract anatomy of the cerebrum[J]. Neurosurgery, 2015, 11 Suppl 2:274-305. DOI:10.1227/neu.0000000000000704.
[4] Catani M, Dell'acqua F, Bizzi A, et al. Beyond cortical localization in clinico-anatomical correlation [J]. Cortex, 2012, 48(10):1262-1287. DOI:10.1016/j.cortex.2012.07.001.
[5] De Benedictis A, Duffau H, Paradiso B, et al. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective [J]. J Anat, 2014, 225(2):132-151. DOI:10.1111/joa.12204.
[6] Zemmoura I, Blanchard E, Raynal PI, et al. How Klingler's dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter [J]. Brain Struct Funct, 2016, 221(5):2477-2486. DOI:10.1007/s00429-015-1050-7.
[7] Türe U, Yaşargil MG, Friedman AH, et al. Fiber dissection technique: lateral aspect of the brain[J]. Neurosurgery, 2000, 47(2):417-427. DOI:10.1097/00006123-200008000-00028.
[8] Fernández-Miranda JC, Wang Y, Pathak S, et al. Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain [J]. Brain Struct Funct, 2015, 220(3):1665-1680. DOI:10.1007/s00429-014-0751-7.
[9] Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study [J]. Cereb Cortex, 2005, 15(6):854-869. DOI:10.1093/cercor/bhh186.
[10]Thiebaut de Schotten M, Dell'Acqua F, Forkel SJ, et al. A lateralized brain network for visuospatial attention [J]. Nat Neurosci, 2011, 14(10):1245-1246. DOI:10.1038/nn.2905.
[11]Glasser MF, Rilling JK. DTI tractography of the human brain's language pathways [J]. Cereb Cortex, 2008, 18(11):2471-2482. DOI:10.1093/cercor/bhn011.
[12]Bozkurt B, Yagmurlu K, Middlebrooks EH, et al. Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Humans [J]. World Neurosurg, 2016, 95:99-107. DOI:10.1016/j.wneu.2016.07.072.
[13]Duffau H, Gatignol P, Mandonnet E, et al. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations [J]. Brain, 2005, 128(Pt 4):797-810. DOI:10.1093/brain/awh423.
[14] Catani M, Jones DK, Donato R, et al. Occipito-temporal connections in the human brain [J]. Brain, 2003, 126(Pt 9):2093-2107. DOI:10.1093/brain/awg203.
[15] Mandonnet E, Duffau H. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces [J]. Front Syst Neurosci, 2014, 8:82. DOI:10.3389/fnsys.2014.00082.
[16]Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN. Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study [J]. Cereb Cortex, 2009, 19(4):777-785. DOI:10.1093/cercor/bhn124.
[17]Seltzer B, Pandya DN. Further observations on parieto-temporal connections in the rhesus monkey [J]. Exp Brain Res,1984, 55(2):301-312. DOI:10.1007/bf00237280.
[18]Makris N, Pandya DN. The extreme capsule in humans and rethinking of the language circuitry [J]. Brain Struct Funct, 2009, 213(3):343-358. DOI:10.1007/s00429-008-0199-8.
[19]Schmahmann JD, Pandya D. Fiber pathways of the brain. OUP USA; 2009.
[20]Dick AS, Bernal B, Tremblay P. The language connectome: new pathways, new concepts [J]. Neuroscientist. 2014, 20(5):453-467. DOI:10.1177/1073858413513502.
基金
安徽省高校科研重点项目(2024AH051901);马鞍山市卫生健康科研项目(MASWJ2023c004);安徽省临床医学研究转化专项项目(202204295107020060,202204295107020013,202204295107020010)