苍耳亭对T细胞Th9分化的特异性调控及其免疫应用潜力

邱钰晖, 高媛, 王涵多

中国临床解剖学杂志 ›› 2025, Vol. 43 ›› Issue (5) : 573-577.

PDF(3224 KB)
PDF(3224 KB)
中国临床解剖学杂志 ›› 2025, Vol. 43 ›› Issue (5) : 573-577. DOI: 10.13418/j.issn.1001-165x.2025.5.11
实验研究

苍耳亭对T细胞Th9分化的特异性调控及其免疫应用潜力

  • 邱钰晖,    高媛,    王涵多*
作者信息 +

Specific regulation of Th9 differentiation and its potential immunological applications of Xanthiazone

  • Qiu Yuhui, Gao Yuan, Wang Handuo*
Author information +
文章历史 +

摘要

目的    探讨苍耳亭对T细胞分化的影响。  方法    体外分选并培养小鼠T细胞,在体外分化为Th1、Th9、Th17、调节性T细胞(Tregs)。加入苍耳亭后,在第3天流式检测各细胞的细胞因子分泌或转录因子表达。之后,检测不同浓度梯度(10 nmol/L、100 nmol/L 、200 nmol/L 、500 nmol/L 、1 μmol/L)的苍耳亭对Th9的促分化作用。  结果    与对照组相比,苍耳亭只能特异性的促进Th9分化,对与Th1、Th17、Treg的分化无影响。进一步检测使用不同浓度梯度的苍耳亭对Th9促分化的作用, 在低于200 nM时,苍耳亭对Th9的促分化作用是梯度依赖性的增强。高于200 nmol/L后,抑制IL-9的分泌。  结论    苍耳亭特异性促进Th9分化且其促进作用呈梯度依赖性。高浓度的苍耳亭可能对T细胞活性产生抑制效应,从而对Th9分化的促进作用形成拮抗。

Abstract

Objective   To investigate the effects of xanthiazone on T cell differentiation.   Methods Mouse T cells were sorted and cultured in vitro under conditions favoring differentiation into Th1, Th9, Th17, and Treg subsets. Xanthiazone was added to the cultures, and cytokine secretion and transcription factor expression were assessed by flow cytometry on the 3rd day. The pro-differentiation effects of xanthiazone on Th9 cells were further evaluated using a concentration gradient (10 nmol/L, 100 nmol/L, 200 nmol/L, 500 nmol/L, 1 μmol/L).   Results   Compared to the control group, xanthiazone selectively promoted Th9 differentiation without affecting Th1, Th17, and Treg differentiation. Furthermore, the concentration-dependent effects of xanthiazone on Th9 differentiation revealed that concentrations below 200 nM enhanced Th9 differentiation in a gradient-dependent manner. However, concentrations above 200 nM inhibited IL-9 secretion.  Conclusions  Higher concentrations of xanthiazone may suppress T cell activity, thereby antagonizing its pro-differentiation effects on Th9 cells.

关键词

苍耳亭 /   /   / Th9 /   /   / T细胞分化

Key words

Xanthiazone /   /   / Th9 /   /   / T cell differentiation

引用本文

导出引用
邱钰晖, 高媛, 王涵多. 苍耳亭对T细胞Th9分化的特异性调控及其免疫应用潜力[J]. 中国临床解剖学杂志. 2025, 43(5): 573-577 https://doi.org/10.13418/j.issn.1001-165x.2025.5.11
Qiu Yuhui, Gao Yuan, Wang Handuo. Specific regulation of Th9 differentiation and its potential immunological applications of Xanthiazone[J]. Chinese Journal of Clinical Anatomy. 2025, 43(5): 573-577 https://doi.org/10.13418/j.issn.1001-165x.2025.5.11
中图分类号: R736.1    

参考文献

[1] Wan J, Wu YQ, Ji XY, et al. IL-9 and IL-9-producing cells in tumor immunity[J]. Cell Commun Signal, 2020, 18(1), 50. DOI: 10.1186/s12964-020-00538-5.
[2] Végran F, Apetoh L, Ghiringhelli F. Th9 cells: a novel CD4 T-cell subset in the immune war against cancer[J]. Cancer Res, 2015, 75(3): 475-479. DOI: 10.1158/0008-5472.CAN-14-2748.
[3] Liu LT, Bi EG, Ma XZ, et al. Enhanced CAR-T activity against established tumors by polarizing human T cells to secrete interleukin-9[J]. Nat Commun, 2020, 11(1): 5902. DOI: 10.1038/s41467-020-19672-2. 
[4] Chen YL, Ma SS, Pi DJ, et al. Luteolin induces pyroptosis in HT-29 cells by activating the Caspase1/Gasdermin D signalling pathway[J]. Front Pharmacol, 2022, 13, 952587. DOI: 10.3389/fphar.2022.952587.
[5] Alibakhshi A, Malekzadeh R, Hosseini SA, et al. Investigation of the therapeutic role of native plant compounds against colorectal cancer based on system biology and virtual screening[J]. Sci Rep, 2023, 13, 11451. DOI: 10.1038/s41598-023-38134-5.
[6] West JR, Goodlett CR. Teratogenic effects of alcohol on brain development[J]. Ann Med,1990, 22, 319-325. DOI: 10.3109/07853899009147914.
[7]  Li WD, Wu Y, Zhang L, et al. Characterization of xanthatin: anticancer properties and mechanisms of inhibited murine melanoma in vitro and in vivo[J]. Phytomedicine, 2013, 20, 865-873. DOI: 10.1016/j.phymed.2013.03.006
[8] Romero M, Zanuy M, Rosell E, et al. Optimization of xanthatin extraction from Xanthium spinosum L. and its cytotoxic, anti-angiogenesis and antiviral properties[J]. Eur J Med Chem, 2015, 90, 491-496. DOI: 10.1016/j.ejmech.2014.11.060.
[9] Bi SX, Li XH, Wei CS, et al. The antitumour growth and antiangiogenesis effects of xanthatin in murine glioma dynamically evaluated by dynamic contrast-enhanced magnetic resonance imaging[J]. Phytother Res, 2019, 33, 149-158. DOI: 10.1002/ptr.6207.
[10]Takeda S, Noguchi M, Matsuo K, et al. (-)-Xanthatin up-regulation of the GADD45gamma tumor suppressor gene in MDA-MB-231 breast cancer cells: role of topoisomerase II alpha inhibition and reactive oxygen species[J]. Toxicology, 2013, 305, 1-9. DOI: 10.1016/j.tox.2012.12.019.
[11]Zhang L, Tao L, Ruan JS, et al. Xanthatin induces G2/M cell cycle arrest and apoptosis in human gastric carcinoma MKN-45 cells[J]. Planta Med, 2012, 78, 890-895. DOI: 10.1055/s-0031-1298481.
[12]Geng YD, Zhang L,Wang GY, et al. Xanthatin mediates G (2)/M cell cycle arrest, autophagy and apoptosis via ROS/XIAP signaling in human colon cancer cells[J]. Nat Prod Res, 2020, 34, 2616-2620. DOI: 10.1080/14786419.2018.1544976.
[13] Bevington SL, Cauchy P, Withers DR, et al. T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation[J]. Front Immunol, 2017, 8, 204. DOI: 10.3389/fimmu.2017.00204.
[14] Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties[J]. Annu Rev Immunol, 1989, 7, 145-173. DOI: 10.1146/annurev.iy.07.040189.001045.
[15] Veldhoen M, Uyttenhove C, van Snick J, et al. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset[J]. Nat Immunol, 2008, 9, 1341-1346. DOI: 10.1038/ni.1659.
[16] Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell, 2006, 126, 1121-1133. DOI: 10.1016/j.cell.2006.07.035.
[17] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299, 1057-1061. DOI: 10.1126/science.1079490.
[18] Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20, 1126-1167. DOI: 10.1089/ars.2012.5149.
[19] Bhattacharyya S, Hossain DMS, Mohanty S, et al. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts[J]. Cell Mol Immunol, 2010, 7, 306-315. DOI: 10.1038/cmi.2010.11.
[20] Qin X, Guo BST, Wan B, et al. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine[J]. J Immunol, 2010, 185, 1855-1863. DOI: 10.4049/jimmunol.0903853.
[21] Zhao PC, Xiao X, Ghobrial RM, et al. IL-9 and Th9 cells: progress and challenges[J]. Int Immunol, 2013, 25, 547-551. DOI: 10.1093/intimm/dxt039.
[22] Angkasekwinai P, Th9 Cells in Allergic Disease[J]. Curr Allergy Asthma Rep, 2019, 19, 29. DOI: 10.1007/s11882-019-0860-8.
[23] He Y, Dong L, Cao Y, et al., IL-9 and Th9 Cells in Tumor Immunity[J]. Adv Exp Med Biol, 2020, 12(40), 35-46. DOI: 10.1007/978-3-030-38315-2_3.

基金

教育部产学合作协同育人项目(231006291253346)

PDF(3224 KB)

Accesses

Citation

Detail

段落导航
相关文章

/