目的 探究依达拉奉对脂多糖激活的BV2小胶质细胞中TDP-43/cGAS/STING信号的影响。 方法 SwissTargetPrediction、Superpred和TargetNet数据库获取依达拉奉潜在作用靶点,经GeneCards、OMIM和TTD数据库筛选出神经炎症相关基因,获得两者交集靶点;用STRING数据库和Cytoscape软件构建蛋白质互作网络;用Metascape数据库进行GO功能富集和KEGG通路富集分析。将BV2小胶质细胞分为对照组、脂多糖激活组和脂多糖加依达拉奉组,采用蛋白质印迹和免疫荧光染色检测TDP-43、cGAS、STING、TNF-α和IL-1β的表达变化。 结果 网络药理学筛选出依达拉奉调节神经炎症的潜在靶点70个,GO共富集1339个条目,KEGG共富集157条信号通路。免疫印迹实验和免疫荧光染色显示,激活的BV2小胶质细胞中TDP-43、cGAS和STING以及炎症因子TNF-α和IL-1β的表达增加,依达拉奉干预后上述因子表达降低。 结论 依达拉奉可抑制BV2细胞中TDP-43/cGAS/STING信号,减轻炎症反应。
Abstract
Objective To explore the effect of Edaravone on TDP-43/cGAS/STING signaling in lipopolysaccharide-activated BV2 microglia. Methods The SwissTargetPrediction, Superpred and TargetNet access to potential targets of Edaravone, the GeneCards, OMIM and TTD databases selected neuroinflammation related genes, get both intersection targets. The protein interaction network was constructed using STRING database and Cytoscape software. GO functional enrichment and KEGG pathway enrichment were analyzed using Metascape database. BV2 microglia were divided into control group, lipopolysaccharide activated group and lipopolysaccharide plus Edaravone group. The expression changes of TDP-43, cGAS, STING, TNF-α and IL-1β were detected by western blot and immunofluorescence staining. Results Network pharmacology identified 70 potential targets of Edaravone in regulating neuroinflammation, with 1339 GO and 157 KEGG pathways enriched. Western blot and immunofluorescence staining showed that, compared with the control group, the expression of TDP-43, cGAS and STING, as well as inflammatory factors TNF-α and IL-1β were increased in activated BV2 microglia, while the expressions of these factors were decreased after Edaravone intervention. Conclusions Edaravone can inhibit TDP-43/cGAS/STING signaling in BV2 cells to reduce inflammation.
关键词
依达拉奉;  /
  /
TAR DNA结合蛋白43;  /
  /
环鸟苷酸-腺苷酸合成酶;  /
  /
干扰素基因刺激因子;  /
  /
神经炎症;  /
  /
网络药理学
Key words
Edaravone;  /
TDP-43;  /
cGAS;  /
  /
STING;  /
Neuroinflammations;  /
Network pharmacology
中图分类号:
 
R322.81
R363.21
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Alsbrook DL, Di Napoli M, Bhatia K, et al. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke [J]. Curr Neurol Neurosci Rep, 2023, 23(8): 407-431. DOI: 10.1007/s11910-023-01282-2.
[2] Planas AM. Role of microglia in stroke [J]. Glia, 2024, 72(6): 1016-1053. DOI: 10.1002/glia.24501.
[3] Yuan Y, Zha H, Rangarajan P, et al. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia [J]. BMC Neurosci, 2014, 15: 125. DOI: 10.1186/s12868-014-0125-3.
[4] Li X, Liu Z, Liao J, et al. Network pharmacology approaches for research of Traditional Chinese Medicines [J]. Chin J Nat Med, 2023, 21(5): 323-332. DOI: 10.1016/S1875-5364(23)60429-7.
[5] 王子怡, 王鑫, 张岱岩, 等. 中医药网络药理学:《指南》引领下的新时代发展[J]. 中国中药杂志, 2022, 47(1): 7-17. DOI: 10.19540/j.cnki.cjcmm.20210914.702.
Wang ZY, Wang X, Zhang DY, et al. Traditional Chinese medicine network pharmacology: development in new era under guidance of network pharmacology evaluation method guidance[J]. China Journal of Chinese Materia Media, 2022, 47(1): 7-17. DOI: 10.19540/j.cnki.cjcmm.20210914.702.
[6] Yu CH, Davidson S, Harapas CR, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS [J]. Cell, 2020, 183(3): 636-649. DOI: 10.1016/j.cell.2020.09.020.
[7] Lloyd AF, Davies CL, Miron VE. Microglia: origins, homeostasis, and roles in myelin repair [J]. Curr Opin Neurobiol, 2017, 47: 113-120. DOI: 10.1016/j.conb.2017.10.001.
[8] Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration [J]. Annu Rev Immunol, 2017, 35: 441-468. DOI: 10.1146/annurev-immunol-051116-052358.
[9] Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies [J]. Int J Mol Sci, 2021, 23(1):14. DOI: 10.3390/ijms 23010014.
[10]Stuckey SM, Ong LK, Collins-Praino LE, et al. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? [J]. Int J Mol Sci, 2021, 22(23):13101. DOI: 10.3390/ijms222313101.
[11]Fidalgo M, Ricardo Pires J, Viseu I, et al. Edaravone for acute ischemic stroke - Systematic review with meta-analysis [J]. Clin Neurol Neurosurg, 2022, 219: 107299. DOI: 10.1016/j.clineuro.2022.107299.
[12]Abe K, Itoyama Y, Sobue G, et al. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients [J]. Amyotroph Lateral Scler Frontotemporal Degener, 2014, 15(7-8): 610-617. DOI: 10.3109/21678421.2014.959024.
[13]Li J, Dai X, Zhou L, et al. Edaravone Plays Protective Effects on LPS-Induced Microglia by Switching M1/M2 Phenotypes and Regulating NLRP3 Inflammasome Activation [J]. Front Pharmacol, 2021, 12: 691773. DOI: 10.3389/fphar.2021.691773.
[14]祁志, 杨力, 贾秋叶, 等. 依达拉奉经MAPKs通路对脂多糖激活的小胶质细胞Sirt3表达调控 [J]. 中国临床解剖学杂志, 2024, 42(01): 47-53. DOI: 10.13418/j.issn.1001-165x.2024.1.09.
Qi Z, Yang L, Jia QY, et al. Edaravone regulates Sirt3 expression in lipopolysaccharide-activated microglia via MAPKs signaling pathway[J]. Chinese Journal of Clinical Anatomy, 2024, 42(01): 47-53. DOI: 10.13418/j.issn.1001-165x.2024.1.09.
[15]Xiaoying M, Zhiming H, Tao Y, et al. Elucidating the molecular mechanisms underlying anti-inflammatory effects of Morchella esculenta in the arachidonic acid metabolic pathway by network pharmacology and molecular docking [J]. Sci Rep, 2023, 13(1): 15881. DOI: 10.1038/s41598-023-42658-1.
[16]Hu P, Sun N, Khan A, et al. Network pharmacology-based study on the mechanism of scutellarin against zearalenone-induced ovarian granulosa cell injury [J]. Ecotoxicol Environ Saf, 2021, 227: 112865. DOI: 10.1016/j.ecoenv.2021.112865.
[17]Ho DM, Shaban M, Mahmood F, et al. cAMP/PKA signaling regulates TDP-43 aggregation and mislocalization [J]. Proc Natl Acad Sci U S A, 2024, 121(24): e2400732121. DOI: 10.1073/pnas.2400732121.
[18]Pérez-Berlanga M, Wiersma VI, Zbinden A, et al. Loss of TDP-43 oligomerization or RNA binding elicits distinct aggregation patterns [J]. Embo J, 2023, 42(17): e111719. DOI: 10.15252/embj.2022111719.
[19]Arseni D, Hasegawa M, Murzin AG, et al. Structure of pathological TDP-43 filaments from ALS with FTLD [J]. Nature, 2022, 601(7891): 139-143. DOI: 10.1038/s41586-021-04199-3.
[20]Maekawa H, Inoue T, Ouchi H, et al. Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury [J]. Cell Rep, 2019, 29(5): 1261-1273. DOI: 10.1016/j.celrep.2019.09.050.
[21] Decout A, Katz JD, Venkatraman S, et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases [J]. Nat Rev Immunol, 2021, 21(9): 548-569. DOI: 10.1038/s41577-021-00524-z.
[22] Zou M, Ke Q, Nie Q, et al. Inhibition of cGAS-STING by JQ1 alleviates oxidative stress-induced retina inflammation and degeneration [J]. Cell Death Differ, 2022, 29(9): 1816-1833. DOI: 10.1038/s41418-022-00967-4.
[23] Shao J, Meng Y, Yuan K, et al. RU.521 mitigates subarachnoid hemorrhage-induced brain injury via regulating microglial polarization and neuroinflammation mediated by the cGAS/STING/NF-κB pathway [J]. Cell Commun Signal, 2023, 21(1): 264. DOI: 10.1186/s12964-023-01274-2.
基金
国家自然科学基金(81960223);云南省-昆明医科大学联合专项(202301AY070001-163);云南省教育厅科学研究基金研究生项目(2024Y206)