目的 探讨不同连接棒组合方式在后路寰枢椎固定中的生物力学稳定性。 方法 选取6具新鲜人体枕颈标本。分为完整状态组(A组)。在完整状态组的基础上建立了II型齿状突骨折的寰枢椎失稳模型(B组)。在失稳模型上,采用不同的固定方式进行后路寰椎(C1)侧块和枢椎(C2)椎弓根及椎板螺钉固定,这包括C1侧块和C2椎弓根平行棒固定(C组)、交叉棒固定(D组),C1侧块和C2椎板平行棒固定(E组)、交叉棒固定(F组)。使用三维运动仪测试各组标本在前屈、后伸、左右侧屈和左右旋转状态下的寰枢椎活动度(ROM),并通过重复测量方差分析评估各组的生物力学特性。 结果 ①在各种状态下,完整状态组和内固定组的寰枢椎活动度均小于失稳组,差异具有统计学意义(P<0.05);②在前屈、后伸和左右侧屈状态下,四种内固定组的寰枢椎活动度没有统计学差异(P>0.05);③在旋转方向上,平行棒内固定组活动度小于交叉棒内固定组,有显著差异(P<0.05),但F组与C组活动度相当,无统计学差异(P>0.05),活动度(ROM):D组<F组=C组<E组<A组<B组。 结论 C1侧块联合C2椎板螺钉构成的短节段平行棒固定系统的抗旋转稳定性稍显不足,而交叉棒固定可以较好的予以弥补。
Abstract
Objective To explore the biomechanical stability of different rod constructs in posterior atlantoaxial fixation. Methods Six fresh human occipitocervical specimens were divided into the intact group (Group A). An atlantoaxial instability model with type II odontoid fracture was established based on the intact group (Group B). Different fixation methods were used for posterior atlantoaxial (C1) lateral mass and (C2) pedicle screw fixation on the instability model. This included lateral mass and pedicle screw parallel rod fixation (Group C), cross-rod fixation (Group D), lateral mass and lamina parallel rod fixation (Group E), and cross-rod fixation (Group F). Three-dimensional motion analysis was used to measure the range of motion (ROM) of the atlantoaxial specimens in flexion, extension, lateral bending, and rotation states, and the biomechanical characteristics of each group were evaluated by repeated measures analysis of variance. Results ① In all states, the ROM of the intact group and internal fixation group was less than that of the instability group, with statistical significance (P<0.05); ② There was no statistical difference in ROM among the four internal fixation groups in flexion, extension, and lateral bending states (P>0.05); ③ In the rotation direction, the ROM of the parallel rod internal fixation group was less than that of the cross-rod internal fixation group, with significant difference (P<0.05), but the ROM of Group F was equivalent to Group C, with no statistical difference (P>0.05), ROM: Group D<Group F=Group C<Group E<Group A<Group B. Conclusions The rotational stability of the short-segment parallel rod fixation system composed of C1 lateral mass and C2 pedicle screws is slightly insufficient, while cross-rod fixation can better compensate for it.
关键词
钉棒 /
  /
  /
后路 /
  /
  /
寰枢椎 /
  /
  /
生物力学
Key words
Rod screw /
  /
  /
Posterior approach /
  /
  /
Atlantoaxial /
  /
  /
  /
Biomechanics.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Tu CQ, Chen ZD, Yao XT, et al. Posterior pedicle screw fixation combined with local steroid injections for treating axial eosinophilic granulomas and atlantoaxial dislocation: A case report[J] .World J Clin Cases, 2023, 11(20): 4944-4955. DOI:10.12998/wjcc.v11.i20.4944.
[2] 欧阳北平,马向阳,罗春山,等. 三维有限元对新型钉尾横连在后路寰枢椎内固定中的力学稳定性评价[J]. 中国临床解剖学杂志, 2023, 41(6):721-727. DOI: 10.13418/j.issn. 1001-165x.2023.6.16.
Ouyang BP, Ma XY, Luo CS, et al. Evaluation of mechanical stability of new horizontal screw-screw crosslink in posterior C1-C2 pedicle screw-rod fixation by three-dimensional finite element[J]. Chinese Journal of Clinical Anatomy, 2023, 41(6):721-727. DOI: 10. 13418/j.issn. 1001-165x.2023.6.16.
[3] Zhang HX, Zhu Y, Shi XQ, et al. Posterior cervical pedicle screw rod short-segment internal fixation for the treatment of atlantoaxial fracture and dislocation [J].Zhongguo Gu Shang, 2023, 36:490-494. DOI:10.12200/j.issn.1003-0034.2023.05.018.
[4] 欧阳北平, 马向阳, 罗春山, 等. 钉尾横连与棒-棒横连在后路寰枢椎固定中的生物力学对比研究[J]. 中国临床解剖学杂志, 2023, 41(5):588-592. DOI:10.13418/j.issn.1001-165 x.2023.5.15.
Ouyang BP, Ma XY, Luo CS, et al.Biomechanical comparison of horizontal screw-screw crosslink and horizontal rod-rod crosslink in C1-C2 pedicle screw-rod fixation[J]. Chinese Journal of Clinical Anatomy, 2023, 41(5):588-592. DOI:10.13418/j.issn.1001-165 x.2023.5.15.
[5] Itoh Y, Kitagawa R, Numazawa S, et al. Atlantoaxial stabilization using C1 lateral mass and C2 pedicle/translaminar screw fixation by intraoperative C1- and C2-direct-captured navigation with preoperative computed tomography images[J].Asian Spine J, 2023, 17(3): 559-566. DOI:10.31616/asj.2022.0182.
[6] Singh DK, Shankar D, Chand VK, et al. C2 superior facetal osteotomy: a novel technique in complex craniovertebral junction surgery for C1 lateral mass screw placement [J]. Asian Spine J, 2023, 17(6): 1125-1131.DOI:10.31616/asj.2023.0216.
[7] Fiorenza V, Ascanio F, Brunasso L, et al. Nuance in craniovertebral junction surgical approach for posterior C1-C2 harms stabilization: "window transposition" of the external vertebral venous plexus for bloodless C1 lateral mass screw insertion: anatomical aspects and technical notes [J]. Acta Neurochir Suppl, 2023, 135: 307-313. DOI:10.1007/978-3-031-36084-8_47.
[8] 马仁财, 马向阳, 邹小宝, 等. 新型枢椎棘突椎板螺钉固定的影像解剖学测量研究[J]. 中国临床解剖学杂志, 2024, 42(3):251-258. DOI:10.13418/j.issn.1001-165x.2024.3.03.
Ma RC, Ma XY, Zou XB, et al. Imaging anatomical measurement study on the fixation of the novel C2 spinous lamina screw[J]. Chinese Journal of Clinical Anatomy, 2024, 42(3):251-258. DOI:10.13418/j.issn.1001-165x.2024.3.03.
[9] Ebraheim N, Rollins JR Jr, Xu R, et al. Anatomic consideration of C2 pedicle screw placement [J]. Spine, 1996, 21 (6):691-695. DOI:10.1097/00007632-199603150-00005.
[10]Bhatia N, Rama A, Sievers B, et al. Biomechanical evaluation of unilateral versus bilateral C1 lateral mass-C2 intralaminar fixation[J] .Global Spine J, 2017, 7(3): 239-245. DOI:10.1177/2192568217694152.
[11]Ouyang B, Zou X, Luo C, et al. Biomechanical study of horizontal screw-screw crosslink in C1-2 pedicle screw-rod fixation[J]. Clin Spine Surg, 2023,36(10): E519-E523. DOI:10.1097/BSD.0000000000 001515.
[12]Ouyang B, Zou X, Luo C, et al. Finite element analysis of horizontal screw-screw crosslink used in C1-C2 pedicle screw-rod fixation[J]. Med Sci Monit, 2021, 27: e932026. DOI:10.12659/MSM.932026.
[13]Lenz M, Egenolf P, Weber M, et al. Pedicle or lateral mass screws in Goel-Harms construct? A biomechanical analysis [J]. Injury, 2023, S0020-1383(23)00291-7. DOI:10.1016/j.injury.2023.03.035.
[14] Harman F, Oglin V,Yilmaz MO, et al. Different C2 screw placement techniques with mobilization of the vertebral artery in high-riding vertebral artery cases: Cadaver dissection [J]. J Craniovertebr Junction Spine, 2023, 14(4): 341-345. DOI:10.4103/jcvjs.jcvjs_73_23.
[15]Zheng G, Yuan B, Zhao Y, et al. C1 transposterior arch lateral mass screws combined with C2 pedicle screw and rod fixation for pediatric atlantoaxial subluxation: A minimal 10-year follow-up outcome analysis[J]. Oper Neurosurg (Hagerstown), 2024, 26(3): 286-292. DOI:10.1227/ons.0000000000000963.
[16]Lehman RA Jr, Dmitriev AE, Wilson KW. Biomechanical analysis of the C2 intralaminar fixation technique using a cross-link and offset connector for an unstable atlantoaxial joint [J]. Spine J, 2012, 12(2): 151-156. DOI:10.1016/j.spinee.2012.01.020.
[17]Gorek J, Acaroglu E,Berven S, et al. Constructs incorporating intralaminar C2 screws provide rigid stability for atlantoaxial fixation[J]. Spine (Phila Pa 1976), 2005, 30(13): 1513-1518. DOI:10.1097/01.brs.0000167827.84020.49.
[18]Bhatia N, Rama A, Sievers B, et al. Biomechanical evaluation of unilateral versus bilateral C1 lateral mass-C2 intralaminar fixation[J].Global Spine J, 2017, 7(3): 239-245.DOI:10.1177/2192568217694152.
[19]Shen K, Deng Z, Yang J, et al. Biomechanical study of novel unilateral C1 posterior arch screws and C2 laminar screws combined with an ipsilateral crossed C1-C2 pedicle screw-rod fixation for atlantoaxial instability[J]. Arch Orthop Trauma Surg, 2017, 137(10): 1349-1355. DOI:10.1007/s00402-017-2781-0.
[20] 邱锋, 许喜林, 马向阳, 等. C2椎板螺钉短节段钉棒固定系统中交叉棒与平行棒固定的生物力学比较[J]. 中国组织工程研究, 2021, 25(12):1805-1809.
Qiu F, Xu XL, Ma XY, et al. Biomechanical comparison of atlantoaxial crossed rod and parallel rod fixation technique for C2 unilateral lamina screws[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(12):1805-1809.
[21]王大天, 邱锋. 寰枢椎后路钉棒系统交叉棒固定及平行棒固定的生物力学稳定性[J]. 中国组织工程研究, 2022, 26(18): 2801-2806.
Wang DT, Qiu F. Biomechanical stability of crossed-rod fixation and parallel-rod fixation of atlantoaxial posterior screw rod system[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(18):2801-2806.
[22]Qiu F, Zou XB, Xu XL, et al. A biomechanical comparison of crossed and parallel rod configurations in atlantoaxial internal fixation[J].Eur Spine J, 2021, 30(2): 576-584. DOI:10.1007/s00586-020-06655-6.