目的 分析伴有优势椎动脉C2椎弓根线性和角度的三维影像学特征。 方法 回顾2022年3月~2023年2月186例患者的颈椎CT血管成像(CT angiography,CTA)资料,双侧椎动脉在C2横突孔横截面直径差值大于0.8 mm定义为优势椎动脉(vertebral artery dominance,VAD),伴VAD患者为VAD组,非VAD为对照组。通过RadiAnt DICOM Viewer软件进行多平面重建,测量C2椎弓根宽度(pedicle outer width,POW)、椎弓根横向角度(pedicle transverse angle,PTA)和峡部-椎弓根矢状位角度(isthmic-pedicle sagittal angle,IPSA),记录两组患者狭窄椎弓根(POW<4.0 mm)的占比,分析VAD对C2椎弓根形态学的影响。 结果 入组患者中49.5%(92/186)伴有VAD,左侧占67.4%(62/92);女性VAD发生率高于男性(P<0.05)。组内比较显示:VAD组C2优势侧POW(4.2±1.3)mm,IPSA(32.6±4.9)°,小于非优势侧(5.8±1.4)mm和36.4±5.5)°,P<0.001,优势侧PTA(36.7±6.4)°,大于非优势侧(30.6±7.1)°,P<0.001;对照组C2左右侧POW、PTA及IPSA无统计学差异。VAD组狭窄椎弓根总体占比(26.6%)高于对照组(10.6%),P<0.001;VAD组的优势侧狭窄椎弓根占比(44.6%)高于非优势侧(8.7%),P<0.001。多因素Logistic回归分析显示VAD是狭窄椎弓根的独立危险因素,Odds Ratio(OR):7.076,95% CI:3.176~15.764,P<0.001。 结论 VAD与C2椎弓根形态改变存在相关性,优势侧的椎弓根细小、内倾较大、尾倾较小,以上形态学特征对C2椎弓根安全置钉具有指导意义。
Abstract
Objective To analyze the three-dimensional imaging characteristics of the linear and angular parameters of the C2 pedicle in patients with dominant vertebral artery. Methods The cervical computed tomography angiography (CTA) imaging data of 186 patients from March 2022 to February 2023 were retrospectively reviewed. Vertebral artery dominance (VAD) was defined as a difference in the cross-sectional diameter of the bilateral vertebral arteries at the C2 transverse foramen greater than 0.8 mm. Patients with VAD were classified as the VAD group, and those without VAD were the normal control group. Multi-planar reconstruction (MPR) was performed using the RadiAnt DICOM Viewer software. The pedicle outer width (POW), pedicle transverse angle (PTA), and isthmic-pedicle sagittal angle (IPSA) of C2 were measured. The proportion of narrow pedicles (POW<4.0 mm) in both groups was recorded. The influence of VAD on the morphology of the C2 pedicle was analyzed. Results Among the 186 patients, 49.5% (92/186) were accompanied by VAD, with the left side accounting for 67.4% (62/92); the incidence of VAD in females was higher than that in males (P<0.05). Intra-group comparison showed that in the VAD group, the POW (4.2± 1.3) mm and IPSA (32.6±4.9)° on the dominant side of C2 were smaller than those on the non-dominant side [(5.8±1.4) mm and (36.4±5.5)°, P<0.001], but the PTA (36.7±6.4)° on the dominant side was greater than that on the non-dominant side [(30.6±7.1)°, P<0.001]. There was no statistical difference in POW, PTA and IPSA on the left and right sides of C2 in the control group (P>0.05). The overall proportion of narrow pedicles in the VAD group (26.6%) was higher than that in the control group (10.6%, P<0.001); the proportion of narrow pedicles on the dominant side in the VAD group was higher than that on the non-dominant side (44.6% vs. 8.7%, P<0.001). Multivariate Logistic regression analysis showed that VAD was an independent risk factor for narrow pedicles (Odds Ratio [OR]: 7.076, 95% CI: 3.176-15.764, P<0.001). Conclusions There is a correlation between VAD and the morphological changes of the C2 pedicle. The pedicle on the dominant side is thinner, has a greater medial inclination and a smaller caudal inclination. The above morphological characteristics have guiding significance for the safe screw placement of the C2 pedicle.
关键词
优势椎动脉;  /
  /
枢椎椎弓根;  /
  /
影像学观察;  /
  /
狭窄椎弓根;  /
  /
相关性
Key words
Dominant vertebral artery;  /
  /
Axis pedicle /
Imaging observation;  /
  /
Narrowed pedicle /
Association
中图分类号:
R323.1
R322.121 
 
 
 
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wang Y, Wang C, Yan M. Clinical outcomes of atlantoaxial dislocation combined with high-riding vertebral artery using C2 translaminar screws[J]. World Neurosurg, 2019, 122: e1511-e1518. DOI: 10.1016/j.wneu.2018.11.092.
[2] 尹东, 刘斌, 王巧民, 等. 寰枢椎不稳后路椎弓根螺钉固定的三维有限元分析[J]. 中国临床解剖学杂志, 2008, 29(5): 539-542. DOI: 10.3969/j.issn.1001-165X.2008.05.021.
Yin D, Liu B, Wang QM, et al. Three-dimensional finite element analysis of atlantoaxial instability posterior fixation with pedicle screws [J]. Chin J Clin Anat, 2008, 29(5): 539-542. DOI: 10.3969/j.issn.1001-165X.2008.05.021.
[3] Chiapparelli E, Bowen E, Okano I, et al. Spinal cord medial safe zone for c2 pedicle instrumentation: an mri measurement analysis[J]. Spine (Phila Pa 1976), 2022,47(3):E101-E106. DOI: 10.1097/BRS.000000 0000004137.
[4] Klepinowski T, Pala B, Cembik J, et al. Prevalence of high-riding vertebral artery: a meta-analysis of the anatomical variant affecting choice of craniocervical fusion method and its outcome[J]. World Neurosurg, 2020, 143: e474-e481. DOI: 10.1016/j.wneu.2020.07.182.
[5] Klepinowski T, Żyłka N, Pala B, et al. Prevalence of high-riding vertebral arteries and narrow C2 pedicles among Central-European population: a computed tomography-based study[J]. Neurosurg Rev, 2021, 44(6): 3277-3282. DOI: 10.1007/s10143-021-01493-6.
[6] Hong JM, Chung CS, Bang OY, et al. Vertebral artery dominance contributes to basilar artery curvature and peri-vertebrobasilar junctional infarcts[J]. J Neurol Neurosurg Psychiatry, 2009, 80(10): 1087-1092. DOI: 10.1136/jnnp.2008.169805.
[7] Ergun O, Gunes Tatar I, Birgi E, et al. Evaluation of vertebral artery dominance, hypoplasia and variations in the origin: angiographic study in 254 patients[J]. Folia Morphol (Warsz), 2016, 75(1): 33-37. DOI: 10.5603/FM.a2015.0061.
[8] Hong JM, Chung CS, Bang OY, et al. Vertebral artery dominance contributes to basilar artery curvature and peri-vertebrobasilar junctional infarcts[J]. J Neurol Neurosurg Psychiatry, 2009, 80(10): 1087-1092. DOI: 10.1136/jnnp.2008.169805.
[9] Grasso G, Alafaci C, Passalacqua M, et al. Landmarks for vertebral artery repositioning in bulbar compression syndrome: anatomic and microsurgical nuances[J]. Neurosurgery, 2005, 56(1 Suppl): 160-164. DOI: 10.1227/01.neu.0000146685.17628.05.
[10]Songur A, Gonul Y, Ozen OA, et al. Variations in the intracranial vertebrobasilar system[J]. Surg Radiol Anat, 2008, 30(3): 257-264. DOI: 10.1007/s00276-008-0309-6.
[11] Yang J, Li T, Wang Q, et al. Morphological characteristics of subaxial cervical pedicles and surrounding critical structures in patients with vertebral artery dominance - an anatomical study based on computed tomographic imaging[J]. BMC Musculoskelet Disord, 2022, 23(1): 306. DOI: 10.1186/s12891-022-05264-2.
[12] Kothari MK, Dalvie SS, Gupta S, et al. The C2 pedicle width, pars length, and laminar thickness in concurrent ipsilateral ponticulus posticus and high-riding vertebral artery: a radiological computed tomography scan-based study[J]. Asian Spine J, 2019, 13(2): 290-295. DOI: 10.31616/asj.2018.0057.
[13]周鑫, 马向阳, 杨进城, 等. 枢椎4层皮质骨椎弓根螺钉的影像学测量及置钉策略[J]. 中国临床解剖学杂志, 2016, 34(1): 53-58. DOI: 10.13418/j.issn.1001-165x.2016.01.015.
Zhou X, Ma XY, Yang JC, et al. Radiographic measurement and the screw placement strategies of axis quadricortical pedicle screw [J]. Chin J Clin Aant, 2016, 34(1): 53-58. DOI: 10.13418/j.issn.1001-165x.2016.01.015.
[14]Yukawa Y, Kato F, Ito K, et al. Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscope[J]. Eur Spine J, 2009, 18(9): 1293-1299. DOI: 10.1007/s00586-009-1032-7.
[15] 邹鹏, 于小钧, 王晓东, 等. 计算机导航和机器人导航辅助寰枢椎椎弓根螺钉植入治疗可复性寰枢椎脱位临床对比研究[J]. 中国修复重建外科志, 2024, 38(8): 911-916. DOI:10.7507/1002-1892.202406018.
Zou P, Yu XJ, Wang XD, et al. Comparative study of computer-assisted and robot-assisted atlantoaxial pedicle screw implantation for reversible atlantoaxial dislocation [J]. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(8): 911-916. DOI:10.7507/1002-1892.202406018.