目的 确定基于磁共振成像(MRI)的宫颈癌(CC)肿瘤三维重建后的三维形态学参数测量能否精准预测其T分期诊断。 方法 回顾收集108例经病理证实为宫颈癌患者的术前MRI图像,将其分为T1、 T2、T3和T4四组,又将T1和T2分为T1a、T1b、T2a和T2b四组。使用Amira2019软件对肿瘤、子宫、阴道、膀胱、尿道和直肠进行分割和三维重建,测量肿瘤的表面积、体积、纵径、前后径、横径、最长径、粗糙程度、质地均一程度和侵犯阴道程度。通过克鲁斯卡尔-沃利斯检验(Kruskal-Wallis test)、卡方检验([χ2]-test)、接收者操作特性(ROC)曲线等来评估统计学差异,并根据约登指数计算不同T分期间的临界值。 结果 肿瘤的表面积、体积、纵径、前后径、横径、最长径和侵犯阴道程度在T1-T4间和T1a-T2b间均有统计学差异(P<0.05),粗糙程度和质地均一程度在T1-T4间和T1a-T2b间均无统计学差异(P>0.05)。其中,T1-T4肿瘤纵径分别平均为2.82 cm、3.78 cm、4.82 cm和6.61 cm (P<0.001),纵径的临界值分别为3.17 cm、4.24 cm和6.57 cm (AUC=0.699、0.73、0.708)。T1a-T2b肿瘤纵径分别平均为2.31 cm、2.84 cm、3.63 cm和4.09 cm (P=0.008),纵径的临界值分别为2.32 cm、3.12 cm和3.94 cm (AUC=0.597、0.689、0.561)。 结论 MRI上宫颈癌肿瘤的形态学参数包括表面积、体积、纵径、前后径、横径、最长径和侵犯阴道程度,为预测宫颈癌患者T分期有价值的诊断因素。本研究有助于宫颈癌的精准诊断、预后评估和治疗决策。
Abstract
Objective To determine whether the measurement of three-dimensional morphological parameters based on magnetic resonance imaging (MRI) can accurately predict the T-stage diagnosis of cervical cancer (CC) tumors or not after three-dimensional reconstruction. Methods Preoperative MRI images from 108 patients with pathologically confirmed cervical cancer were retrospectively collected and divided into four groups: T1, T2, T3 and T4. T1 and T2 were further divided into four subgroups: T1a, T1b, T2a and T2b. The Amira2019 software was used to segment and 3D reconstruct the tumor, uterus, vagina, bladder, urethra, and rectum. The surface area, volume, longitudinal diameter, anterior posterior diameter, transverse diameter, longest diameter, roughness, texture uniformity and degree of vaginal invasion of tumor were measured. The statistical differences were evaluated by using Kruskal-Wallis test, [χ2]-test, receiver operating characteristic (ROC) curve, etc., and the cut-off values for different T-stages were calculated based on Youden's index. Results There were statistical differences in the surface area, volume, longitudinal diameter, anterior posterior diameter, transverse diameter, longest diameter and degree of vaginal invasion of tumor between T1-T4 and T1a-T2b (P<0.05), while there was no statistical difference in roughness and texture uniformity between T1-T4 and T1a-T2b (P<0.001). Among them, the longitudinal average diameters of T1-T4 tumors were 2.82 cm, 3.78 cm, 4.82 cm and 6.61 cm (P<0.001), respectively, with cut-off values of 3.17 cm , 4.24 cm and 6.57 cm (AUC=0.699, 0.73, 0.708). The longitudinal average diameters of T1a-T2b tumors were 2.31 cm, 2.84 cm, 3.63 cm and 4.09 cm (P=0.008), respectively, with cut-off values of 2.32 cm, 3.12 cm and 3.94 cm (AUC=0.597, 0.689, 0.561). Conclusions The morphological parameters of cervical cancer tumors on MRI include surface area, volume, longitudinal diameter, anterior posterior diameter, transverse diameter, longest diameter, and degree of vaginal invasion of tumor, which are valuable diagnostic factors for predicting T-stage in cervical cancer patients. This study contributes to the accurate diagnosis, prognostic evaluation, and treatment decision-making of cervical cancer.
关键词
宫颈癌;  /
  /
磁共振成像;  /
  /
T分期诊断;  /
  /
三维重建
Key words
Cervical cancer;  /
  /
Magnetic resonance imaging (MRI);  /
  /
T-stage diagnosis;  /
  /
Three-dimensional reconstruction
中图分类号:
R711.74
R737.33
R445.2 
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 金鸽,李魁秀,郭云峰,等.宫颈癌近距离放疗的研究进展[J].国际妇产科学杂志, 2022, 49(2):202-206. DOI:10.12280/gjfckx.20210574.
[2] Buskwofie A, David-West G, Clare CA. A Review of Cervical Cancer: Incidence and Disparities[J]. J Natl Med Assoc, 2020, 112(2):229-232. DOI:10.1016/j.jnma.2020.03.002.
[3] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI:10.3322/caac.21660.
[4] Zou Z, Fairley CK, Ong JJ, et al. Domestic HPV vaccine price and economic returns for cervical cancer prevention in China: a cost-effectiveness analysis[J]. Lancet Glob Health, 2020, 8(10):e1335-e1344. DOI: 10.1016/S2214-109X(20)30277-1.
[5] Singh D, Vignat J, Lorenzoni V, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative[J]. Lancet Glob Health, 2023, 11(2):e197-e206. DOI: 10.1016/S2214-109X(22)00501-0.
[6] Ramli Z, Karim MKA, Effendy N, et al. Stability and Reproducibility of Radiomic Features Based on Various Segmentation Techniques on Cervical Cancer DWI-MRI[J]. Diagnostics (Basel), 2022, 12(12):3125. DOI: 10.3390/diagnostics12123125.
[7] Devine C, Viswanathan C, Faria S, et al. Imaging and Staging of Cervical Cancer[J]. Semin Ultrasound CT MR, 2019, 40(4):280-286. DOI:10.1053/j.sult.2019.03.001.
[8] Song J, Hu Q, Huang J, et al. Combining tumor size and diffusion-weighted imaging to diagnose normal-sized metastatic pelvic lymph nodes in cervical cancers[J]. Acta Radiol, 2019, 60(3):388-395. DOI: 10.1177/0284185118780903.
[9] 王新婧, 施磊, 李兵, 等. DWI联合MRI动态增强扫描在诊断宫颈癌分期中的应用[J].中国中西医结合影像学杂志, 2024, 22(2):207-211. DOI:10.3969/j.issn.1672-0512.2024.02.017.
[10]李淑健, 程敬亮, 张勇, 等. T2 mapping成像评估宫颈癌病理学特征[J].中国医学影像技术, 2019, 35(9):1365-1369. DOI:10.13929/j.1003-3289.201903113.
[11]Cai H, Wang R, Li Y, et al. Role of 3D reconstruction in the evaluation of patients with lower segment oesophageal cancer[J]. J Thorac Dis,2018, 10(7):3940-3947. DOI: 10.21037/jtd.2018.06.119.
[12]Robb H, Scrimgeour G, Boshier P, et al. The current and possible future role of 3D modelling within oesophagogastric surgery: a scoping review[J]. Surg Endosc, 2022, 36(8):5907-5920. DOI: 10.1007/s00464-022-09176-z.
[13]Wu QY, Liu SL, Sun P, et al. Establishment and clinical application value of an automatic diagnosis platform for rectal cancer T-staging based on a deep neural network[J]. Chin Med J (Engl), 2021, 134(7):821-828. DOI: 10.1097/CM9.0000000000001401.
[14]Yang Q, Guo Y, Ou X, et al. Automatic T staging using weakly supervised deep learning for nasopharyngeal carcinoma on MR images[J]. J Magn Reson Imaging, 2020, 52(4):1074- 1082. DOI:10.1002/jmri.27202.
[15]Zhong Y, She Y, Deng J, et al. Deep learning for prediction of N2 metastasis and survival for clinical stage I non-small cell lung cancer[J]. Radiology, 2021,302(1):200-211.DOI: 10.1148/radiol. 2021210902.
[16]Wang W, Zhou Y, Wang D, et al. Prophylactic Extended-Field Irradiation in Patients With Cervical Cancer: A Literature Review[J]. Front Oncol, 2020, 10:579410. DOI: 10.3389/fonc.2020.579410.
[17]Bianchi L, Schiavina R, Bortolani B, et al. Novel Volumetric and Morphological Parameters Derived from Three-dimensional Virtual Modeling to Improve Comprehension of Tumor's Anatomy in Patients with Renal Cancer[J]. Eur Urol Focus, 2022, 8(5):1300-1308. DOI: 10.1016/j.euf.2021.08.002.
[18]Shen S, Zhang S, Liu P, et al. Potential role of microRNAs in the treatment and diagnosis of cervical cancer[J]. Cancer Genet, 2020, 248-249:25-30. DOI:10.1016/j.cancergen.2020.09.003.
[19]Li J, Gu C, Zheng H, et al. Ultrasonographic diagnosis in rare primary cervical cancer[J]. Int J Gynecol Cancer, 2021, 31(12):1535-1540. DOI: 10.1136/ijgc-2021-002860.
[20]Tu S, Zhang H, Yang X, et al. Screening of cervical cancer-related hub genes based on comprehensive bioinformatics analysis[J]. Cancer Biomark, 2021, 32(3):303-315. DOI:10.3233/CBM-203262.
[21]Xu L, Cai F, Fu Y, et al. Cervical cell classification with deep-learning algorithms[J]. Med Biol Eng Comput, 2023,61(3):821-833. DOI: 10.1007/s11517-022-02745-3.
[22]程贤文, 邹晓凤, 赖伟建. MRI常规序列及DWI序列用于宫颈癌分期诊断中的应用[J].医学理论与实践, 2024, 37(8):1369-1371. DOI:10.19381/j.issn.1001-7585.2024.08.037.
[23]Zhang J, Tian W, Bu X, et al. Diagnostic significance of magnetic resonance imaging in patients with cervical cancer after brachytherapy: a meta-analysis[J]. Acta Radiol, 2019, 60(5):670-676. DOI: 10.1177/0284185118791199.
基金
国家自然科学基金面上项目(31971113); 重庆市科技英才项目(CQYC201905037); 重庆市重点研发项目(CSTB2022TIAD-KPX0181)