[1] 邱蔚六.口腔颌面部缺损修复重建的现状和展望[J].中国修复重建外科杂志, 2005,19(10):769-772. CNKI:SUN:ZXCW.0.2005-10-000.
[2] Li J, Pepe A, Gsaxner C, et al. An online platform for automatic skull defect restoration and cranial implant design[C]. Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling. SPIE, 2021, 11598: 472-479. DOI: 10.1117/12.2580719.
[3] Oh JH. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing[J]. Maxillofac Plast Reconstr Surg, 2018, 40(1):2. DOI:10.1186/s40902-018-0141-9.
[4] Park SH, Han K, Jang HY, et al. Methods for clinical evaluation of artificial intelligence algorithms for medical diagnosis[J]. Radiology, 2023, 306(1): 20-31. DOI: 10.1148/radiol.220182.
[5] Cui Z, Fang Y, Mei L, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nat Commun, 2022, 13(1):2096. DOI: 10.1038/s41467-022-29637-2.
[6] Li J, Gsaxner C, Pepe A, et al. Synthetic skull bone defects for automatic patient-specific craniofacial implant design[J]. Sci Data, 2021, 8(1):36. DOI: 10.1038/s41597-021-00806-0.
[7] Tingaud-Sequeira A, Trimouille A, Sagardoy T, et al. Oculo-auriculo-vertebral spectrum: new genes and literature review on a complex disease[J]. J Med Genet,2022,59(5):417-427. DOI: 10.1136/jmedgenet- 2021-108219.
[8] Marszałek-Kruk BA, Wójcicki P, Dowgierd K, et al. Treacher Collins syndrome: genetics, clinical features and management[J]. Genes, 2021, 12(9):1392. DOI: 10.3390/genes12091392.
[9] Hegdé J, Tustison N J, Parker W T, et al. An anatomical template for the normalization of medical images of adult human hands[J]. Diagnostics, 2023, 13(12): 2010. DOI:10.3390/diagnostics13122010.
[10]Li J, Von Campe G, Pepe A, et al. Automatic skull defect restoration and cranial implant generation for cranioplasty[J]. Med Image Anal, 2021, 73: 102171. DOI:10.1016/j.media.2021.102171.
[11]Zhang J, Gao Y, Wang L, et al. Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multiscale statistical features[J]. IEEE Trans Biomed Eng, 2015, 63(9): 1820-1829. DOI: 10.1109/TBME.2015.2503421.
[12]Chen X, Lian C, Deng H H, et al. Fast and accurate craniomaxillofacial landmark detection via 3D faster R-CNN[J]. IEEE Trans Med Imaging, 2021, 40(12): 3867-3878. DOI: 10.1109/TMI.2021.3099509.
[13]Silva TP, Hughes MM, Menezes LS, et al. Artificial intelligence-based cephalometric landmark annotation and measurements according to Arnett’s analysis: can we trust a bot to do that [J]? Dentomaxillofac Radiol, 2022, 51(6): 20200548. DOI: 10.1259/dmfr.20200548.
[14]Ma Q, Kobayashi E, Fan B, et al. Machine‐learning‐based approach for predicting postoperative skeletal changes for orthognathic surgical planning[J]. Int J Med Robot, 2022, 18(3): e2379. DOI: 10.1002/rcs.2379.
[15]Tanikawa C, Yamashiro T. Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients[J]. Sci Rep, 2021, 11(1): 15853. DOI: 10.1038/s41598-021-95002-w.
[16]Jong L. On the persistence of race: Unique skulls and average tissue depths in the practice of forensic craniofacial depiction[J]. Soc Stud Sci, 2023, 53(6): 891-915. DOI: 10.1177/03063127221112073.
[17]Zheng X, Ding S, Mei Q, et al. A cross-sectional study: correlation of forehead morphology and dentoskeletal malocclusion in Chinese people[J]. BMC Oral Health, 2024, 24(1): 50. DOI: 10.1186/s12903-023-03795-1.
[18]Chen X, Xu L, Li X, et al. Computer-aided implant design for the restoration of cranial defects[J]. Sci Rep, 2017, 7(1): 4199. DOI: 10.1038/s41598-017-04454-6.
|