[1] 汤其元,马亚萍,张斌,等. 骨组织再生工程中富血小板血浆的应用与研究进展[J]. 中国组织工程研究, 2019, 23(4):597-605. DOI:10.3969/j.issn.2095-4344.1042.
[2] Shafaei H, Kalarestaghi H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation[J]. J Cell Physiol, 2020, 235(11):8371-8386, https://doi.org//10.1002/jcp.29681.
[3] Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions[J]. Nat Rev Rheumatol, 2015, 11(1):45-54. DOI:10.1038/nrrheum.2014.164.
[4] Ho-Shui-Ling A, Bolander J, Rustom L E, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives[J]. Biomaterials, 2018,180:143-162. DOI:10.1016/j.biomaterials.2018.07.017.
[5] 陈犹白,陈聪慧,Zhang Qixu,等. 脂肪干细胞成骨分化的研究进展[J]. 中华损伤与修复杂志(电子版), 2016,11(2):126-134. DOI: 10.3877 /cma.j.issn.1673-9450.2016.02.011
[6] Ciuffi S, Zonefrati R, Brandi M L. Adipose stem cells for bone tissue repair[J]. Clin Cases Miner Bone Metab, 2017,14(2):217-226. DOI:10.11138/ccmbm/2017.14.1.217.
[7] 唐宇欣,金晗,史册,等. 脂肪干细胞及其向成骨细胞分化的调控机制[J]. 国际口腔医学杂志, 2014, 41(4):418-423.
[8] Tsang EJ, Wu B, Zuk P. MAPK signaling has stage-dependent osteogenic effects on human adipose-derived stem cells in vitro[J]. Connect Tissue Res,2018, 59(2):129-146. DOI:10.1080/03008207. 2017.1313248.
[9] Kuterbekov M, Jonas AM, Glinel K, et al. Osteogenic differentiation of adipose-derived stromal cells: from bench to clinics[J]. Tissue Eng Part B Rev, 2020, 26(5):461-474. DOI: 10.1089/ten.TEB.2019.0225.
[10] Shi Y, He G, Lee WC, et al. Gli1 identifies osteogenic progenitors for bone formation and fracture repair[J]. Nat Commun, 2017, 8(1):2043. DOI:10.1038/s41467-017-02171-2.
[11] Shaik S, Martin EC, Hayes DJ, et al. Transcriptomic profiling of adipose derived stem cells undergoing osteogenesis by RNA-Seq[J]. Sci Rep, 2019, 9(1):11800. DOI:10.1038/s41598-019-48089-1.
[12] Houschyar KS, Tapking C, Borrelli MR, et al. Wnt pathway in bone repair and regeneration - what do we know so far[J]. Front Cell Dev Biol, 2018, 6:170. DOI:10.3389/fcell.2018.00170.
[13] Mende W, Götzl R, Kubo Y, et al. The role of adipose stem cells in bone regeneration and bone tissue engineering[J]. Cells, 2021,10(5):975. DOI:10.3390/cells10050975.
[14] Alverdy AK, Pakvasa M, Zhao C, et al. Imiquimod acts synergistically with BMP9 through the notch pathway as an osteoinductive agent in vitro[J]. Plast Reconstr Surg, 2019,144(5):1094-1103. DOI:10.1097/PRS.0000000000006159.
[15] Devetzi M, Goulielmaki M, Khoury N, et al. Geneticallymodified stem cells in treatment of human diseases: Tissue kallikrein (KLK1)based targeted therapy (Review)[J]. Int J Mol Med, 2018, 41(3):1177-1186. DOI:10.3892/ijmm.2018.3361.
[16] Lee E, Ko JY, Kim J, et al. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway[J]. Biomater Sci, 2019,7(11):4588-4602. DOI:10.1039/c9bm01037h.
[17] Lee JS, Lee JM, Im GI. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells[J]. Biomaterials, 2011,32(3):760-768. DOI:10.1016/j.biomaterials. 2010. 09.042.
[18] Asgharzadeh A, Alizadeh S, Keramati MR, et al. Upregulation of miR-210 promotes differentiation of mesenchymal stem cells (MSCs) into osteoblasts[J]. Bosn J Basic Med Sci, 2018,18(4):328-335. DOI:10.17305/bjbms.2018.2633.
[19] Bougioukli S, Sugiyama O, Pannell W, et al. Gene therapy for bone repair using human cells: superior osteogenic potential of bone morphogenetic protein 2-transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow[J]. Hum Gene Ther, 2018, 29(4):507-519. DOI:10.1089/hum.2017.097.
[20]Park SY, Kim KH, Kim S, et al. BMP-2 gene delivery-based bone regeneration in dentistry[J]. Pharmaceutics, 2019,11(8): 393. DOI:10.3390/pharmaceutics11080393.
[21] Hyun J, Grova M, Nejadnik H, et al. Enhancing in vivo survival of adipose-derived stromal cells through Bcl-2 overexpression using a minicircle vector[J]. Stem Cells Transl Med, 2013, 2(9):690-702. DOI:10.5966/sctm.2013-0035.
[22] Brett E, Zielins E R, Luan A, et al. Magnetic nanoparticle-based upregulation of B-Cell lymphoma 2 enhances bone regeneration[J]. Stem Cells Transl Med, 2017, 6(1):151-160. DOI:10.5966/sctm.2016-0051.
[23] Labusca L, Herea DD, Danceanu CM, et al. The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2020,109:110652. DOI:10.1016/j.msec.2020.110652.
[24] Jung H, Rim YA, Park N, et al. Restoration of osteogenesis by CRISPR/Cas9 genome editing of the mutated COL1A1 gene in osteogenesis imperfecta[J]. J Clin Med, 2021,10(14):3141. DOI:10.3390/jcm10143141.
[25] Freitas GP, Lopes HB, Souza A, et al. Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation[J]. Gene Ther, 2021, 28(12):748-759. DOI:10.1038/s41434-021-00248-8.
[26] 陈犹白,陈聪慧,Zhang Qixu,等. 脂肪干细胞分离、纯化和保存:研究进展与未来方向[J]. 中国组织工程研究, 2016, 20(10):1508-1520. DOI: 10.3969/j.issn.2095-4344.2016.10.020.
[27] Paduano F, Marrelli M, Amantea M, et al. Adipose tissue as a strategic source of mesenchymal Stem cells in bone regeneration: a topical review on the most promising craniomaxillofacial applications[J]. Int J Mol Sci, 2017,18(10):2140. DOI:10.3390/ijms18102140.
|