[1] Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers,2020,6(1):92. DOI: 10.1038/s41572-020-00224-3.
[2] Mhaidly N, Journe F, Najem A, et al. Macrophage profiling in head and neck cancer to improve patient prognosis and assessment of cancer cell-macrophage interactions using three-dimensional coculture models[J]. Int J Mol Sci,2023,24(16). DOI: 10.3390/ijms241612813.
[3] Seminerio I, Kindt N, Descamps G, et al. High infiltration of CD68+ macrophages is associated with poor prognoses of head and neck squamous cell carcinoma patients and is influenced by human papillomavirus[J]. Oncotarget, 2018, 9(13):11046-11059. DOI:10.18632/oncotarget.24306.
[4] Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019,79(18):4557-4566. DOI:10.1158/0008-5472.CAN-18-3962.
[5] Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15:123-147. DOI: 10.1146/annurev-pathmechdis-012418-012718.
[6] Qi J, Sun H, Zhang Y, et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer[J]. Nat Commun, 2022,13(1):1742. DOI: 10.1038/s41467-022-29366-6.
[7] Ruffin AT, Cillo AR, Tabib T, et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma[J]. Nat Commun, 2021,12(1):3349. DOI: 10.1038/s41467-021-23355-x.
[8] Cheng HY, Hsieh CH, Lin PH, et al. Snail-regulated exosomal microRNA-21 suppresses NLRP3 inflammasome activity to enhance cisplatin resistance[J]. J Immunother Cancer, 2022,10(8): e004832. DOI: 10.1136/jitc-2022-004832.
[9] Mody MD, Rocco JW, Yom SS, et al. Head and neck cancer[J]. Lancet, 2021, 398(10318):2289-2299. DOI: 10.1016/S0140-6736(21)01550-6.
[10] Peters S, Paz-Ares L, Herbst RS, et al. Addressing CPI resistance in NSCLC: targeting TAM receptors to modulate the tumor microenvironment and future prospects[J]. J Immunother Cancer, 2022,10(7). DOI: 10.1136/jitc-2022-004863.
[11]Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol,2022,19(6):402-421. DOI: 10.1038/s41571-022-00620-6.
[12] Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol,2022, 23(8):1148-1156. DOI:10.1038/s41590-022-01267-2.
[13] Lamort AS, Giopanou I, Psallidas I, et al. Osteopontin as a link between inflammation and cancer: the thorax in the spotlight[J]. Cells,2019,8(8):815. DOI: 10.3390/cells8080815.
[14]Zhu Y, Yang J, Xu D, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade[J]. Gut,2019,68(9):1653-1666. DOI: 10.1136/gutjnl-2019-318419.
[15]Bill R, Wirapati P, Messemaker M, et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers[J]. Science, 2023, 381(6657):515-524. DOI:10.1126/science.ade2292.
|