目的 应用生物信息学的方法分析筛选头颈部鳞状细胞癌(HNSCC) 巨噬细胞中的潜在关键基因,为HNSCC的预后提供靶点。 方法 基于在线数据库,利用一致流形近似与投影(UMAP)降维,捕获巨噬细胞群;进一步通过t-分布随机近邻嵌入(tSNE)聚类降维分析肿瘤组织与正常组织细胞群分布的变化并筛选差异基因的表达;运用 Monocle 包对关键风险基因在不同发育阶段细胞中的表达情况进行分析;利用Kaplan-Meier Plotter在线数据平台分析生存曲线;运用空间转录组技术验证关键基因在组织中的表达映射;多色荧光免疫组化进行临床样本的验证。 结果 捕获得到7个巨噬细胞亚群,其中第1亚群仅存在于肿瘤组织中且分泌型磷蛋白1(SPP1)基因高富集。SPP1高表达趋向巨噬细胞M2型极化并处于细胞分化的终末阶段。SPP1+巨噬细胞糖酵解、缺氧、上皮间质化、血管生成等功能活跃,与HNSCC患者的预后呈负相关。 结论 SPP1可能成为 HNSCC 中有价值的预后生物标志物。
Abstract
Objective To analyze and screen potential key genes in macrophages of head and neck squamous cell carcinoma (HNSCC) by bioinformatics, and to provide a target for the prognosis of HNSCC. Methods The macrophage population was captured by using uniform manifold approximation and projection (UMAP) dimensionality reduction based on online database. Furthermore, T-distributed random neighbor embedding (tSNE) clustering was used to analyze the changes of cell population distribution in tumor tissue and normal tissue, and to screen the expression of differential genes. Monocle package was used to analyze the expression of key risk genes in cells at different developmental stages. The survival curve was analyzed using Kaplan-Meier Plotter online data platform. Spatial transcriptome technology was used to verify the expression mapping of key genes in tissues. Clinical samples were validated by multicolor fluorescence immunohistochemistry. Results Seven macrophage subgroups were captured, of which the first subgroup existed only in tumor tissue and SPP1 gene was highly enriched. The high expression of SPP1 tended to the M2-type polarization of macrophages and was in the terminal stage of cell differentiation. SPP1+ macrophages had active functions such as glycolysis, hypoxia, epithelialization, and angiogenesis. The expression of SPP1+ macrophages was negatively correlated with the prognosis of HNSCC patients. Conclusions SPP1 may be a valuable prognostic biomarker in HNSCC.
关键词
头颈部鳞状细胞癌 /
  /
  /
分泌型磷蛋白1(SPP1) /
  /
  /
肿瘤相关巨噬细胞
Key words
HNSCC /
  /
  /
  /
SPP1 /
  /
  /
  /
Tumor-associated macrophages(TAM)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers,2020,6(1):92. DOI: 10.1038/s41572-020-00224-3.
[2] Mhaidly N, Journe F, Najem A, et al. Macrophage profiling in head and neck cancer to improve patient prognosis and assessment of cancer cell-macrophage interactions using three-dimensional coculture models[J]. Int J Mol Sci,2023,24(16). DOI: 10.3390/ijms241612813.
[3] Seminerio I, Kindt N, Descamps G, et al. High infiltration of CD68+ macrophages is associated with poor prognoses of head and neck squamous cell carcinoma patients and is influenced by human papillomavirus[J]. Oncotarget, 2018, 9(13):11046-11059. DOI:10.18632/oncotarget.24306.
[4] Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression[J]. Cancer Res, 2019,79(18):4557-4566. DOI:10.1158/0008-5472.CAN-18-3962.
[5] Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15:123-147. DOI: 10.1146/annurev-pathmechdis-012418-012718.
[6] Qi J, Sun H, Zhang Y, et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer[J]. Nat Commun, 2022,13(1):1742. DOI: 10.1038/s41467-022-29366-6.
[7] Ruffin AT, Cillo AR, Tabib T, et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma[J]. Nat Commun, 2021,12(1):3349. DOI: 10.1038/s41467-021-23355-x.
[8] Cheng HY, Hsieh CH, Lin PH, et al. Snail-regulated exosomal microRNA-21 suppresses NLRP3 inflammasome activity to enhance cisplatin resistance[J]. J Immunother Cancer, 2022,10(8): e004832. DOI: 10.1136/jitc-2022-004832.
[9] Mody MD, Rocco JW, Yom SS, et al. Head and neck cancer[J]. Lancet, 2021, 398(10318):2289-2299. DOI: 10.1016/S0140-6736(21)01550-6.
[10] Peters S, Paz-Ares L, Herbst RS, et al. Addressing CPI resistance in NSCLC: targeting TAM receptors to modulate the tumor microenvironment and future prospects[J]. J Immunother Cancer, 2022,10(7). DOI: 10.1136/jitc-2022-004863.
[11]Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol,2022,19(6):402-421. DOI: 10.1038/s41571-022-00620-6.
[12] Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol,2022, 23(8):1148-1156. DOI:10.1038/s41590-022-01267-2.
[13] Lamort AS, Giopanou I, Psallidas I, et al. Osteopontin as a link between inflammation and cancer: the thorax in the spotlight[J]. Cells,2019,8(8):815. DOI: 10.3390/cells8080815.
[14]Zhu Y, Yang J, Xu D, et al. Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade[J]. Gut,2019,68(9):1653-1666. DOI: 10.1136/gutjnl-2019-318419.
[15]Bill R, Wirapati P, Messemaker M, et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers[J]. Science, 2023, 381(6657):515-524. DOI:10.1126/science.ade2292.
基金
国家自然科学基金面上项目(No. 82073165);广东省医学科学技术研究基金项目(No. A2023124)