目的 探讨miR-125a对巨噬细胞脂质代谢及主动脉粥样硬化(atherosclerosis,AS)病变的影响及作用机制。 方法 油红O及比色法检测巨噬细胞内脂滴情况及脂质含量;生物信息学预测miR-125a下游靶标;双荧光素酶报告基因验证miR-125a与sortilin mRNA靶向结合;qPCR、Western blot和免疫组化检测荷脂THP-1巨噬细胞和低密度脂蛋白受体敲除(LDLR?/?)小鼠中miR-125a及sortilin表达;全自动生化分析仪测定血脂改变;组织染色显示主动脉AS斑块面积及脂质沉积情况。 结果 过表达miR-125a可减轻THP-1巨噬细胞内脂质蓄积;生信分析和荧光素酶报告基因显示sortilin mRNA是miR-125a的作用靶标;过表达miR-125a可下调巨噬细胞sortilin表达,减少胞内脂滴数量及脂质含量,改善LDLR?/?小鼠血脂谱,抑制主动脉脂质沉积及AS病变面积。 结论 miR-125a可通过下调sortilin表达抑制巨噬细胞脂质蓄积及主动脉AS病变。
Abstract
Objective To investigate the effect and mechanism of miR-125a on the lipid metabolism of macrophages and the development of aortic atherosclerosis (AS) in LDLR?/? mice. Methods The lipid accumulation in macrophages was evaluated by Oil red O staining and colorimetry. The bioinformatics was used to predict the target gene of miR-125a. Double luciferase reporter gene analyzed the targeted binding between miR-125a and SORT1. The expressions of miR-125a and sortilin were detected in lipid-laden THP-1 macrophages and low-density lipoprotein receptor knockout (LDLR?/?) mice by qPCR、Western blot and immunohistochemistry. The blood lipid level was measured with automatic biochemical analyzer. The aortic AS plaque and lipid accumulation were showed by histological staining. Results Overexpression of miR-125a reduced lipid accumulation in THP-1 macrophages. Bioinformatics analysis and luciferase reporter gene showed that sortilin mRNA was a potential target of miR-125a. Overexpression of miR-125a suppressed sortilin expression and lipid accumulation in macrophages. miR-125a also ameliorated the blood lipid profile and reduced the plaque area of aortic AS in LDLR?/? mice. Conclusions miR-125a inhibits macrophage lipid accumulation and the progression of aortic AS by down-regulating sortilin expression.
关键词
miR-125a;  /
  /
sortilin;  /
  /
巨噬细胞;  /
  /
脂质蓄积;  /
  /
动脉粥样硬化
Key words
miR-125a;  /
  /
sortilin;  /
  /
Macrophages;  /
  /
Lipid accumulation;  /
  /
Atherosclerosis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姜志胜, 唐朝克, 秦树存, 等. 动脉粥样硬化学[M]. 北京: 北京科学出版社, 2017: 29-56, 67-140.
[2] 王声全, 张光琼, 沈祥春, 等. 艳山姜挥发油调控PPARγ/ABCA1信号抑制巨噬细胞源性泡沫细胞形成的作用机制[J]. 中华中医药杂志, 2022, 37(2): 1118-1122.
[3] Li H, Yu XH, Tang CK, et al. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis[J]. Prog Lipid Res, 2021, 83: 101109. DOI: 10.1016/j.plipres.2021.101109.
[4] Ouyang SH, Jia B, Lv YC, et al. Mechanism underlying the regulation of sortilin expression and its trafficking function[J]. J Cell Physiol, 2020, 235(12): 8958-8971. DOI: 10.1002/jcp.29818.
[5] Lv YC, Yang J, Zhong LY, et al. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein[J]. ABBS, 2019, 51(5): 471-483. DOI: 10.1093/abbs/gmz029.
[6] Clark JR, Gemin M, Koschinsky ML, et al. Sortilin enhances secretion of apolipoprotein(a) through effects on apolipoprotein B secretion and promotes uptake of lipoprotein(a)[J]. J Lipid Res, 2022, 63(6): 100216. DOI: 10.1016/j.jlr.2022.100216.
[7] Şimsek Z, Alizade E, Pala S, et al. Serum sortilin as a predictor of stroke in patients with intermediate carotid artery stenosis[J]. Vascular, 2022, 31(2): 317-324. DOI: 10.1177/17085381211067051.
[8] Li H, Wang XG, Luo B, et al. The up-regulation of endothelin-1 and down-regulation ofmiR-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery[J]. Cardiovasc Pathol, 2014, 23(4): 217-223. DOI: 10.1016/j.carpath.2014.03.009.
[9] Chen K, He HH, Mo ZH, et al. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis[J]. Sci Rep, 2015, 5: 1-15. DOI: 10.1038/srep11909.
[10]Chen T, Huang ZQ, Wang CQ, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages[J]. Cardiovasc Res, 2009, 83(1): 131-139. DOI: 10.1093/cvr/cvp121.
[11] Hwang SJ, Ahn BJ, Lee HJ, et al. miR-125a-5p attenuates macrophage-mediated vascular dysfunction by targeting Ninjurin1[J]. Cell Death Differ, 2022, 29(6): 1199-1210. DOI: 10.1038/s41418-021-00911-y.
基金
广西自治区自然科学基金(2019JJA140728);湖南省自然科学基金项目(2020JJ4532)