3D打印在脊髓损伤修复中的研究现状与展望

孔玥莹, 王艺霖, 赵宏, 谭思杰, 黄文华

中国临床解剖学杂志 ›› 2024, Vol. 42 ›› Issue (4) : 480-483.

PDF(533 KB)
PDF(533 KB)
中国临床解剖学杂志 ›› 2024, Vol. 42 ›› Issue (4) : 480-483. DOI: 10.13418/j.issn.1001-165x.2024.4.22
综述

3D打印在脊髓损伤修复中的研究现状与展望

  • 孔玥莹1,    王艺霖2,    赵宏3,   谭思杰1,   黄文华1,2*
作者信息 +

Research status and prospect of 3D printing in spinal cord injury repair

  • Kong Yueying1, Wang Yilin2, Zhao Hong3, Tan Sijie1, Huang Wenhua1,2*
Author information +
文章历史 +

引用本文

导出引用
孔玥莹, 王艺霖, 赵宏, 谭思杰, 黄文华. 3D打印在脊髓损伤修复中的研究现状与展望[J]. 中国临床解剖学杂志. 2024, 42(4): 480-483 https://doi.org/10.13418/j.issn.1001-165x.2024.4.22
Kong Yueying, Wang Yilin, Zhao Hong, Tan Sijie, Huang Wenhua. Research status and prospect of 3D printing in spinal cord injury repair[J]. Chinese Journal of Clinical Anatomy. 2024, 42(4): 480-483 https://doi.org/10.13418/j.issn.1001-165x.2024.4.22
中图分类号: R318    R651.2         

参考文献

[1] Arber S, Costa RM. Connecting neuronal circuits for movement [J]. Science (New York, NY), 2018, 360(6396): 1403-1404. DOI:10.1126/science.aat5994.
[2]  赵兴昌, 宋世强, 何峰, 等. 生物材料支架在治疗脊髓损伤中的应用[J].中国组织工程研究, 2022, 26(28):4562-4568. 
[3] Venkatesh K, Ghosh SK, Mullick M, et al. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications [J]. Cell and tissue research, 2019, 377(2): 125-151. DOI:10.1007/s00441-019-03039-1.
[4]  王仲楠, 董大明. 组织工程支架在脊髓损伤修复中的研究进展[J].神经损伤与功能重建. 2022, 17(2): 103-106. DOI:10.16780/j.cnki.sjssgncj.20201242.
[5]  Ashammakhi N, Kim HJ, Ehsanipour A, et al. Regenerative Therapies for Spinal Cord Injury [J]. Tissue Eng Part B Rev, 2019, 25(6): 471-491. DOI:10.1089/ten.TEB.2019.0182.
[6]  Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury [J]. Neural Regen Res, 2019, 14(8): 1352-1363. DOI:10.4103/1673-5374.253512.
[7]  田婷, 李晓光. 脊髓损伤再生修复中的问题与挑战[J].中国组织工程研究, 2021, 25(19): 3039-3048. 
[8] Yuan TY, Zhang J, Yu T, et al. 3D Bioprinting for Spinal Cord Injury Repair [J]. Front Bioeng Biotechnol, 2022, 10:847344. DOI:10.3389/fbioe.2022.847344.
[9] Ahuja CS, Nori S, Tetreault L, et al. Traumatic Spinal Cord Injury-Repair and Regeneration [J]. 2017, 80(3S): S9-S22. DOI:10.1093/neuros/nyw080.
[10]Joung D, Lavoie NS, Guo SZ, et al. 3D Printed Neural Regeneration Devices [J]. Adv Funct Mater, 2020, 30(1): 10.1002/adfm.201906237 DOI:10.1002/adfm.201906237.
[11]詹佳楠, 杨洋, 黄文华. 3D打印技术在康复支具制作的应用研究[J].中国医学物理学杂志, 2022, 39(10): 1310-1312. 
[12]陆声, 辛欣, 黄文华, 等. 3D打印骨科手术导板的临床应用进展[J].南方医科大学学报, 2020, 40(8): 1220-1224. 
[13]黄文华. 生物3D打印在器官再造中的前沿热点和研究进展[J].器官移植,2022, 13(2): 161-168. 
[14]陆声, 罗浩天, 陈家瑜, 等. 3D打印应用于膝关节骨缺损修复重建1例 [J]. 中国临床解剖学杂志, 2021, 39(6): 732-737. DOI:10.13418/j.issn.1001-165x.2021.06.020.
[15]Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering [J]. Theranostics, 2021, 11(16): 7948-7969. DOI:10.7150/thno.61621.
[16]Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues [J]. Experimental cell research, 1988, 179(2): 362-373. DOI:10.1016/0014-4827(88)90275-3.
[17]Gu Z, Fu J, Lin H, et al. Development of 3D bioprinting: From printing methods to biomedical applications [J]. Asian J Pharm Sci, 2020, 15(5): 529-557. DOI:10.1016/j.ajps.2019.11.003.
[18]杨鑫, 荔志云. 3D打印技术在神经外科临床治疗中的应用进展[J].海南医学, 2022, 33(19): 2564-2567. 
[19]Bedir T, Ulag S, Ustundag CB, et al. 3D bioprinting applications in neural tissue engineering for spinal co rd injury repair [J]. Materials science & engineering C, Materials for biological applicati ons, 2020,110:110741. DOI:10.1016/j.msec.2020.110741.
[20]Chung JJ, Im H, Kim S H, et al. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine [J]. Front Bioeng Biotechnol, 2020, 8:586406. DOI:10.3389/fbioe.2020.586406.
[21]Xiao Z, Tang F, Zhao Y, et al. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells [J]. Cell Transplant, 2018, 27(6): 907-915. DOI:10.1177/0963689718766279.
[22]Wang L, Wu Y, Hu T, et al. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation [J]. Acta Biomater, 2019, 96:175-187. DOI:10.1016/j.actbio.2019.06.035.
[23]Silva NA, Sousa N, Reis RL, et al. From basics to clinical: a comprehensive review on spinal cord injury [J]. Prog Neurobiol, 2014, 114:25-57. DOI:10.1016/j.pneurobio.2013.11.002.
[24]Ganau M, Zewude R, Fehlings M. Functional Anatomy of the Spinal Cord: Treatment Approaches and Options [M]. 2019: 3-12.
[25]Ge H, Xue X, Xian J, et al. Ferrostatin-1 Alleviates White Matter Injury Via Decreasing Ferroptosis Following Spinal Cord Injury [J]. Mol Neurobiol, 2022, 59(1): 161-176. DOI:10.1007/s12035-021-02571-y.
[26]Bae HG, Kim TK, Suk HY, et al. White matter and neurological disorders [J]. Archives of pharmacal research, 2020, 43(9): 920-931. DOI:10.1007/s12272-020-01270-x.
[27]Jiang JP, Liu XY, Zhao F, et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury [J]. Neural Regen Res, 2020, 15(5): 959-968. DOI:10.4103/1673-5374.268974.
[28]Li XH, Zhu X, Liu XY, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats [J]. J Mater Sci Mater Med, 2021, 32(4): 31. DOI:10.1007/s10856-021-06500-2.
[29]Li X, Liu D, Xiao Z, et al. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation [J]. Biomaterials, 2019, 197:20-31. DOI:10.1016/j.biomaterials.2019.01.012.
[30]Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair [J]. Nat Med, 2019, 25(2): 263-269. DOI:10.1038/s41591-018-0296-z.
[31]Assinck P, Duncan G J, Hilton B J, et al. Cell transplantation therapy for spinal cord injury [J]. Nat Neurosci, 2017, 20(5): 637-647. DOI:10.1038/nn.4541.
[32]Kadoya K, Lu P, Nguyen K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration [J]. Nat Med, 2016, 22(5): 479-487. DOI:10.1038/nm.4066.
[33]Knowlton S, Anand S, Shah T, et al. Bioprinting for Neural Tissue Engineering [J]. Trends in neurosciences, 2018, 41(1): 31-46. DOI:10.1016/j.tins.2017.11.001.
[34]Joung D, Truong V, Neitzke C C, et al. 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds [J]. Adv Funct Mater, 2018, 28(39):1801850. DOI:10.1002/adfm.201801850.
[35]Wang J, Kong X, Li Q, et al. The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury [J]. Biofabrication, 2021,13(4): 10.1088/758-5090/ac0c5f.DOI:10.1088/1758-5090/ac0c5f.
[36]Bradbury E J, Burnside E R. Moving beyond the glial scar for spinal cord repair [J]. Nat Commun, 2019, 10(1): 3879. DOI:10.1038/s41467-019-11707-7.
[37]Sun Y, Yang C, Zhu X, et al. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury [J]. J Biomed Mater Res A, 2019, 107(9): 1898-1908. DOI:10.1002/jbm.a.36675.
[38]Chen C, Zhao ML, Zhang RK, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats [J]. J Biomed Mater Res A, 2017, 105(5): 1324-1332. DOI:10.1002/jbm.a.36011.
[39]Nori S, Nakamura M, Okano H. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy [J]. Prog Brain Res, 2017,231:33-56. DOI:10.1016/bs.pbr.2016.12.007. 
[40]Yang Y, Fan Y, Zhang H, et al. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury [J]. Biomaterials, 2021, 269:120479. DOI:10.1016/j.biomaterials.2020.120479.
[41]Ahuja CS, Mothe A, Khazaei M, et al. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury [J]. Stem Cells Transl Med, 2020, 9(12): 1509-1530. DOI:10.1002/sctm.19-0135.
[42]Wang B, Liu S, Xie YY, et al. A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury [J]. Neural Regen Res, 2021, 16(11): 2284-2292 DOI:10.4103/1673-5374.310698.
[43]de Freria CM, Van Niekerk E, Blesch A, et al. Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity [J]. Cells, 2021, 10(12): 3296 . DOI:10.3390/cells10123296.
[44]Zarepour A, Hooshmand S, Gokmen A, et al. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms [J]. Cells, 2021, 10(11):3189. DOI:10.3390/cells10113189.
[45]Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair [J]. Biomaterials, 2021, 272:120771. DOI:10.1016/j.biomaterials.2021.120771.
[46] Zhu W, George JK, Sorger VJ, et al. 3D printing scaffold coupled with low level light therapy for neural tissue regeneration [J]. Biofabrication, 2017, 9(2): 025002. DOI:10.1088/1758-5090/aa6999.
[47]Liu S, Yang H, Chen D, et al. Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury [J]. Regenerative biomaterials,2022, 9:rbac038. DOI:10.1093/rb/rbac038.
[48]Li Y, Cao X, Deng W, et al. 3D printable Sodium alginate-Matrigel (SA-MA) hydrogel facilitated ectomesenchymal stem cells (EMSCs) neuron differentiation [J]. J Biomater Appl, 2021, 35(6): 709-719. DOI:10.1177/0885328220961261.
[49]Chen C, Xu HH, Liu XY, et al. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats [J]. Regenerative biomaterials, 2022, 9:rbac014. DOI:10.1093/rb/rbac014.
[50]Kakizawa S. Chapter 41 - Neurotrophin family [M]// ANDO H, UKENA K, NAGATA S. Handbook of Hormones (Second Edition). San Diego; Academic Press. 2021: 471-473.
[51]Rocco ML, Soligo M, Manni L, et al. Nerve Growth Factor: Early Studies and Recent Clinical Trials [J]. Curr Neuropharmacol, 2018, 16(10): 1455-1465. DOI:10.2174/1570159X16666180412092859.
[52]Liu K P, Ma W, Li C Y, et al. Neurotrophic factors combined with stem cells in the treatment of sciatic nerve injury in rats: a meta-analysis [J]. Bioscience reports, 42(1): BSR20211399. DOI:10.1042/BSR20211399.
[53]杨璇,李宪,张鹏, 等.被动运动对脊髓损伤大鼠后肢运动功能及骨骼肌的影响 [J]. 中国临床解剖学杂志, 2018, 36(3): 299-303. DOI:10.13418/j.issn.1001-165x.2018.03.012.
[54]Liu X, Chen C, Xu HH, et al. Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury [J]. Regen Biomater, 2021, 8(6): rbab047. DOI:10.1093/rb/rbab047.
[55] Cheng H, Huang Y, Yue H, et al. Electrical Stimulation Promotes Stem Cell Neural Differentiation in Tissue Engineering [J]. Stem Cells Int, 2021, 2021:6697574. DOI:10.1155/2021/6697574.
[56]Heo DN, Lee SJ, Timsina R, et al. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering [J]. Mater Sci Eng C Mater Biol Appl, 2019, 99:582-590. DOI:10.1016/j.msec.2019.02.008.
[57]Kuzmenko V, Karabulut E, Pernevik E, et al. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [J]. Carbohydr Polym,2018,189:22-30. DOI:10.1016/j.carbpol.2018. 01. 097

基金

广东省科技计划项目(2020B1515120001);广东医科大学学科建设项目(G622280009,4SG22260G)

PDF(533 KB)

Accesses

Citation

Detail

段落导航
相关文章

/