[1] Kizaki K, El-Khechen HA, Yamashita F, et al. Arthroscopic versus open osteochondral autograft transplantation (mosaicplasty) for cartilage damage of the knee: a systematic review[J]. J Knee Surg, 2021, 34(1): 94-107. DOI: 10.1055/s-0039-1692999.
[2] 穆琳, 曾今实, 黄元亮, 等. 3D生物打印脂肪来源干细胞联合甲基丙烯酰化明胶构建组织工程软骨的实验研究[J]. 中国修复重建外科杂志, 2021, 35(7): 896-903. DOI: 10.7507/1002-1892.202101049.
[3] García-Astrain C, Lenzi E, Jimenez de Aberasturi D, et al. 3D-printed biocompatible scaffolds with built-in nanoplasmonic sensors[J]. Adv Funct Mater, 2020, 30(45): 1. DOI: 10.1002/adfm.202005407.
[4] Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds[J]. Bioact Mater, 2020, 5(1): 82-91. DOI: 10.1016/j.bioactmat.2020.01.004.
[5] Daly AC, Freeman FE, Gonzalez-Fernandez T, et al. 3D bioprinting for cartilage and osteochondral tissue engineering[J]. Adv Healthc Mater, 2017, 6(22): 1. DOI: 10.1002/adhm.201700298.
[6] Zhou X, Tenaglio S, Esworthy T, et al. Three-dimensional printing biologically inspired dna-based gradient scaffolds for cartilage tissue regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(29): 33219-33228. DOI: 10.1021/acsami.0c07918.
[7] Bliley JM, Shiwarski DJ, Feinberg AW. 3D-bioprinted human tissue and the path toward clinical translation[J]. Sci Transl Med, 2022, 14(666): eabo7047. DOI: 10.1126/scitranslmed.abo7047.
[8] Liu Y, Peng L, Li L, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model[J]. Biomaterials, 2021, 279: 121216. DOI: 10.1016/j.biomaterials.2021.121216.
[9] O'Shea DG, Curtin CM, O'Brien FJ. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering[J]. Biomater Sci, 2022, 10(10): 2462-2483. DOI: 10.1039/d1bm01540k.
[10]Hu X, Man Y, Li W, et al. 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds[J]. Polymers (Basel), 2019, 11(10): 1601. DOI: 10.3390/polym11101601.
[11]Men YT, Jiang YL, Chen L, et al. On mechanical mechanism of damage evolution in articular cartilage[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 79-87. DOI: 10.1016/j.msec.2017.03.289.
[12]严玲玲, 郑丽梅, 高杰, 等. 选择性激光熔融打印钛种植体的制备和表面优化处理及其成骨性能的研究[J]. 中国临床解剖学杂志, 2018, 36(3): 313-818. DOI: 10.13418/j.issn.1001-165x.2018.03.016.
[13]Xia H, Zhao D, Zhu H, et al. Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration[J]. ACS Appl Mater Interfaces, 2018, 10(37): 31704-31715. DOI: 10.1021/acsami.8b10926.
[14]Jung CS, Kim BK, Lee J, et al. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape[J]. Tissue Eng Regen Med, 2018, 15(2): 155-162. DOI: 10.1007/s13770-017-0104-8.
[15]Olate-Moya F, Arens L, Wilhelm M, et al. Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication[J]. ACS Appl Mater Interfaces, 2020, 12(4): 4343-4357. DOI: 10.1021/acsami.9b22062.
[16]Gong L, Li J, Zhang J, et al. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration[J]. Acta Biomater, 2020, 117(2): 46-60. DOI: 10.1016/j.actbio.2020.09.039.
[17]Huang J, Huang Z, Liang Y, et al. 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair[J]. Biomater Sci, 2021, 9(7): 2620-2630. DOI: 10.1039/d0bm02103b.
[18]Wei P, Xu Y, Gu Y, et al. IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering[J]. Drug Deliv, 2020, 27(1): 1106-1114. DOI: 10.1080/10717544.2020.1797239.
[19]Huang J, Liu W, Liang Y, et al. Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold[J]. Mater Sci Eng C Mater Biol Appl, 2018, 87: 70-77. DOI: 10.1016/j.msec.2018.02.003.
[20]Feng C, Zhang W, Deng C, et al. 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration[J]. Adv Sci (Weinh), 2017, 4(12): 1700401. DOI: 10.1002/advs.201700401.
[21]Gao F, Xu Z, Liang Q, et al. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect[J]. Adv Funct Mater, 2018, 28(13): 1. DOI: 10.1002/adfm.201706644.
[22]Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials[J]. Semin Immunol, 2017, 29: 72-91. DOI: 10.1016/j.smim.2017.01.002.
[23]Kim YS, Majid M, Melchiorri AJ, et al. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering[J]. Bioeng Transl Med, 2019, 4(1): 83-95. DOI: 10.1002/btm2.10110.
[24]张凯, 王大平, 朱伟民, 等. 骨髓间充质干细胞与纳米羟基磷灰石支架材料的体外相容性研究[J]. 中国临床解剖学杂志, 2011, 29(2): 213-216, 221. DOI: 10.13418/j.issn.1001-165x.2011.02.037.
[25]Laird NZ, Acri TM, Chakka JL, et al. Applications of nanotechnology in 3D printed tissue engineering scaffolds[J]. Eur J Pharm Biopharm, 2021, 161: 15-28. DOI: 10.1016/j.ejpb.2021.01.018.
[26]Cuijun Deng RL, Meng Zhang, Chen Qin, et al. Micro/nanometer-structured scaffolds for regeneration of both cartilage and subchondral bone[J]. Adv Funct Mater, 2018, 29(4): 1806068. DOI: 10.1002/adfm.201806068.
[27]Jia P, Zhao X, Liu Y, et al. The RGD-modified self-assembling D-form peptide hydrogel enhances the therapeutic effects of mesenchymal stem cells (MSC) for hindlimb ischemia by promoting angiogenesis[J]. Chem Eng J, 2022, 450: 1. DOI: 10.1016/j.cej.2022.138004.
[28]Qin C, Ma J, Chen L, et al. 3D bioprinting of multicellular scaffolds for osteochondral regeneration[J]. Materials Today, 2021, 49: 68-84. DOI: 10.1016/j.mattod.2021.04.016.
[29]Hao L, Tianyuan Z, Zhen Y, et al. Biofabrication of cell-free dual drug-releasing biomimetic scaffolds for meniscal regeneration[J]. Biofabrication, 2021, 14(1): 1. DOI: 10.1088/1758-5090/ac2cd7.
[30]Yang Z, Zhao T, Gao C, et al. 3D-bioprinted difunctional scaffold for in situ cartilage regeneration based on aptamer-directed cell recruitment and growth factor-enhanced cell chondrogenesis[J]. ACS Appl Mater Interfaces, 2021, 13(20): 23369-23383. DOI: 10.1021/acsami.1c01844.
[31]Guo W, Chen M, Wang Z, et al. 3D-printed cell-free PCL-MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration[J]. Bioact Mater, 2021, 6(10): 3620-3633. DOI: 10.1016/j.bioactmat.2021.02.019.
[32]Yang Y, Zheng W, Tan W, et al. Injectable MMP1-sensitive microspheres with spatiotemporally controlled exosome release promote neovascularized bone healing[J]. Acta Biomater, 2023, 157: 321-336. DOI: 10.1016/j.actbio.2022.11.065.
[33]Kamperman T, Henke S, van den Berg A, et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments[J]. Adv Healthc Mater, 2017,6(3): 1. DOI: 10.1002/adhm.201600913.
[34]Chen J, Huang D, Wang L, et al. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation[J]. J Colloid Interface Sci, 2020, 574: 162-173. DOI: 10.1016/j.jcis.2020.04.040.
[35]Lin L, Wang Y, Wang L, et al. Injectable microfluidic hydrogel microspheres based on chitosan and poly(ethylene glycol) diacrylate (PEGDA) as chondrocyte carriers[J]. RSC Adv, 2020, 10(65): 39662-39672. DOI: 10.1039/d0ra07318k.
|