幼羊硬脑膜mRNA表达差异及影响颅缝处细胞迁移的信号通路探究

王孟辉, 高岩, 叶小健, 张春阳, 邵国, 吴启润

中国临床解剖学杂志 ›› 2023, Vol. 41 ›› Issue (2) : 187-193.

PDF(5880 KB)
PDF(5880 KB)
中国临床解剖学杂志 ›› 2023, Vol. 41 ›› Issue (2) : 187-193. DOI: 10.13418/j.issn.1001-165x.2023.2.12
实验研究

幼羊硬脑膜mRNA表达差异及影响颅缝处细胞迁移的信号通路探究

  • 王孟辉1,2,3,4,    高岩1,2,3,4,    叶小健1,2,3,4,    张春阳1,2,3,4*,    邵国1,5,    吴启润1
作者信息 +

Analysis on the differential expression of mRNA in the dura mater of Ovis aries and the potential signaling pathways affecting cell migration

  • Wang Menghui1,2,3,4, GaoYan1,2,3,4, Ye Xiaojian1,2,3,4, Zhang Chunyang1,2,3,4*, Shao Guo1,5, Wu Qirun1
Author information +
文章历史 +

摘要

目的     探讨颅缝处硬脑膜相较于普通颅骨下硬脑膜的差异表达基因,以及骨缝处硬脑膜对于细胞迁移作用的机制,为临床颅骨缝早闭合补充理论基础。  方法    选取6只51日龄小尾寒羊,分别取其颅缝与非颅缝下方的硬脑膜,利用二代测序检测发育期小尾寒羊的不同部位硬脑膜细胞中mRNA表达差异,进行生物信息分析,并通过RT-PCR对测序结果中mRNA表达情况进行验证。  结果    通过对颅缝处硬脑膜与颅骨下方硬脑膜共有的差异表达上调基因生物信息分析发现,关于骨缝处硬脑膜相对于颅骨下方硬脑膜上调的研究主要集中于细胞迁移、血管束形成以及细胞外基质产生等方面,富集程度最高的细胞通路为PI3K-AKT细胞信号通路。相关基因验证发现,PI3K-AKT细胞信号通路表达量在颅缝处下方硬脑膜较普通颅骨下方硬脑膜升高,有统计学意义(P<0.05)。  结论    颅骨骨缝处硬脑膜相对于颅骨下方硬脑膜PI3K-AKT细胞信号通路表达量显著升高,可能与该通路所具有的增殖与迁移功能有关。

Abstract

Objective    To explore the differentially expressed genes of the suture dura compared with the normal subcranial dura and the mechanism of the suture dura mater on the migration of cranial suture cells, so as to provide theoretical basis for clinical suture premature closure.    Methods    Six 51-day- old Ovis aries were selected. The dura mater under the cranial suture and non-cranial suture were extracted, respectively. The second-generation sequencing was used to detect the differential expression of mRNA in the dural cells of different parts of the Ovis aries in the developmental stage. The biological information were analyzed. The changes of mRNA expression in the sequencing results were verified by Real-time PCR.    Results    Through the analysis of the biological information of the differential expression up-regulation genes shared by the dura mater at the suture and the dura below the skull, it was found that the up-regulation of the dura at the suture, relative to the dura below the skull, was mainly focused on cell migration, vascular bundle formation, and extracellular matrix production. The most enriched cell pathway was PI3K-AKT cell signaling pathway. Validation of the PI3K signaling pathway gene with high expression in the dura showed that the expression of PI3K-AKT cell signaling pathway in the dura below the suture was higher than that of the normal skull, and it was statistically significant (P<0.05).    Conclusions    The PI3K-AKT cell signaling pathway expression level in the dura at the suture is significantly increased compared with that below the skull, which may be related to the proliferation and migration function of the PI3K-AKT cell signaling pathway.

关键词

 颅骨发育;  /   / 颅缝;  /   / 硬脑膜;  /   / mRNA;  /   / 二代测序技术

Key words

Skull development;  /   / Cranial suture;  /  Dura materm;  /  mRNA;  /  Second-generation sequencing technology

引用本文

导出引用
王孟辉, 高岩, 叶小健, 张春阳, 邵国, 吴启润. 幼羊硬脑膜mRNA表达差异及影响颅缝处细胞迁移的信号通路探究[J]. 中国临床解剖学杂志. 2023, 41(2): 187-193 https://doi.org/10.13418/j.issn.1001-165x.2023.2.12
Wang Menghui, GaoYan, Ye Xiaojian, Zhang Chunyang, Shao Guo, Wu Qirun. Analysis on the differential expression of mRNA in the dura mater of Ovis aries and the potential signaling pathways affecting cell migration[J]. Chinese Journal of Clinical Anatomy. 2023, 41(2): 187-193 https://doi.org/10.13418/j.issn.1001-165x.2023.2.12
中图分类号: R651    

参考文献

[1] Cornelissen M, Ottelander Bd, Rizopoulos D, et al. Increase of prevalence of craniosynostosis[J]. J Craniomaxillofac Surg, 2016,44(9): 1273-1279. DOI: 10.1016/j.jcms.2016.07.007.
[2] Twigg SR, Wilkie AO. Ac-pathophysiological framework for craniosynostosis[J]. Am J Hum Genet, 2015, 97(3): 359-377. DOI: 10.1016/j.ajhg.2015.07.006.
[3]  Calpena E, Wurmser M, McGowan SJ, et al. Unexpected role of SIX1 variants in craniosynostosis: expanding the phenotype of SIX1-related disorders [J]. J Med Genet, 2021, 59(2): 165-169. DOI: 10.1136/jmedgenet-2020-107459.
[4]  Maruyama T. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration[J]. Keio J Med, 2019, 68(2): 42. DOI: 10.1038/ncomms10526.
[5]  Holmes G, Gonzalez-Reiche AS, Lu N, et al. Integrated transcriptome and network analysis reveals spatiotemporal dynamics of calvarial suturogenesis[J]. Cell Rep, 2020, 32(1): 107871. DOI: 10.1016/j.celrep.2020.107871.
[6] Maruyama T, Jeong J, Sheu TJ, et al. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration[J]. Nat Commun, 2016, 7: 10526. DOI: 10.1038/ncomms10526.
[7] Bala K, Cuellar A, Herren AW, et al. Identification of differentially expressed proteins between fused and open sutures in sagittal nonsyndromic craniosynostosis during suture development by quantitative proteomic analysis[J]. Proteomics Clin Appl, 2021, 15(2-3): e2000031. DOI: 10.1002/prca.202000031.
[8]  Bhat A, Boyadjiev SA, Senders CW, et al. Differential growth factor adsorption to calvarial osteoblast-secreted extracellular matrices instructs osteoblastic behavior[J]. PLoS One, 2011, 6(10): e25990. DOI: 10.1371/journal.pone.0025990.
[9]  Sahar DE, Behr B, Fong KD, et al. Unique modulation of cadherin expression pattern during posterior frontal cranial suture development and closure[J]. Cells Tissues Organs, 2010, 191(5): 401-413. DOI: 10.1159/000272318.
[10] Betances EM, Mendez MD, M Das J. Craniosynostosis. In: StatPearls. Treasure Island (FL)[M]. StatPearls Publishing; August 12, 2021.
[11]Gagan JR, Tholpady SS, Ogle RC. Cellular dynamics and tissue interactions of the dura mater during head development[J]. Birth Defects Res C Embryo Today, 2007, 81(4): 297-304. DOI: 10.1002/bdrc.20104.
[12]Ogle RC, Tholpady SS, McGlynn KA, et al. Regulation of cranial suture morphogenesis[J]. Cells Tissues Organs, 2004, 176(1-3): 54-66. DOI: 10.1159/000075027.
[13]Zhao H, Feng J, Ho TV, et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones[J]. Nat Cell Biol, 2015, 17(4): 386-396. DOI: 10.1038/ncb3139.
[14] Yu M, Ma L, Yuan Y, et al. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis[J]. Cell, 2021, 184(1): 243-256.e18. DOI: 10.1016/j.cell.2020.11.037.
[15] He F, Soriano P. Dysregulated PDGFR α signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification[J]. Development, 2017, 144(21): 4026-4036. DOI: 10.1242/dev.151068.

基金

国家自然科学基金(No.81960238,82160250);内蒙古科技厅科技计划项目(201702101);内蒙古卫生厅(201701097);内蒙古教育厅项目(NJZZ20168);包头市医药卫生基金(2019C3008-1);内蒙古自治区自然科学基金项目(2019BS08007)

PDF(5880 KB)

Accesses

Citation

Detail

段落导航
相关文章

/