基于中国数字化人体的支气管树三维模型构建及纤维支气管镜手术模拟仿真

杨静怡, 胡昕, 姚洁, 徐洲, 杨智, 陈志, 吴毅

中国临床解剖学杂志 ›› 2023, Vol. 41 ›› Issue (1) : 1-7.

PDF(8102 KB)
PDF(8102 KB)
中国临床解剖学杂志 ›› 2023, Vol. 41 ›› Issue (1) : 1-7. DOI: 10.13418/j.issn.1001-165x.2023.1.01
断层影像解剖

基于中国数字化人体的支气管树三维模型构建及纤维支气管镜手术模拟仿真

  • 杨静怡1,    胡昕1,     姚洁1,    徐洲1,    杨智2,    陈志3*,    吴毅1*
作者信息 +

The three-dimensional model construction of bronchial tree and the simulation of fiberoptic bronchoscopy surgery based on Chinese Visible Human dataset 

  • Yang Jingyi1, Hu Xin1, Yao Jie1, Xu Zhou1, Yang Zhi2, Chen Zhi3*, Wu Yi1*
Author information +
文章历史 +

摘要

目的    构建人体肺支气管树详细的三维数字化结构,并进行虚拟仿真和3D打印,为纤维支气管镜手术虚拟仿真提供精准的形态学资料。  方法    选择中国数字化人体CVH1,2,5,6胸部的断层解剖图像,使用AMIRA软件对肺和支气管树进行分割并三维重建,使用Cinema 4D软件平滑,构建交互式3D-PDF模型,并进行3D打印,创建虚拟纤维支气管镜手术仿真模型。  结果   我们构建了4例详细的肺支气管树三维数字化模型,包括3例成人,1例儿童,展示了人体支气管树3~6级分支,4级与6级分支数都为上一级分支数两倍左右,左肺段支气管为8段,6级支气管分支数为63.8±3.6,右肺段支气管为10段,6级支气管分支数为63.8±3.6,左右肺6级支气管数比为0.79。支气管最长长度均位于左叶,儿童管腔直径均小于3例成人的管腔直径。  结论   支气管树的三维数字化模型、3D打印模型、3D-PDF和手术虚拟仿真软件,提高了对支气管树解剖学和发育生物学的认识。我们认为,左肺的B1+2和B7+8段支气管为单独的段支气管,而不是两段合并的段支气管,此研究为临床解剖学教学和纤维支气管镜手术虚拟仿真提供了形态学基础。

Abstract

Objective    To construct detailed three-dimensional (3D) digital structures and apply to virtual simulation and 3D printing of the human lung bronchial trees, so as to provide accurate morphological data for the virtual simulation of fiberoptic bronchoscopy surgery.    Methods    The tomographic anatomical images of Chinese Visible Human CVH1,2,5,6 chest were selected. The lungs and bronchial trees were segmented and  reconstructed in 3D by using AMIRA software. Cinema 4D software was used to smooth, construct an interactive 3D-PDF model, and perform 3D printing to create virtual fiberoptic bronchoscopy surgery simulation model.    Results    Detailed 3D digital models of 4 lung bronchial trees were constructed, including 3 adults and 1 child, showing the branches of the human bronchial tree at 3-6 levels, the number of branches at level 4 and level 6 was about twice the number of branches of the upper level. The segment of left lung was 8, the number of bronchial branches at level 6 was (63.8±3.6), the segment of right lung was 10, the number of bronchial branches at level 6 was (63.8±3.6), and the bronchial branches number ratio of the left and right lungs was 0.79. The longest length of the bronchus was located in the left lobe, and the diameter of children’s lumen was smaller than that of three adults.   Conclusions    The 3D digital model, 3D printing model, 3D-PDF and virtual simulation software for surgery of the bronchial trees have improved the understanding of anatomy and developmental biology of bronchial tree. We believe that the B1+2 and B7+8 bronchopulmonary segments of the left lung are separate segmental bronchi, rather than two combined segmental bronchi, which provides morphological basis for clinical anatomy teaching and virtual simulation of fiberoptic bronchoscopy surgery.

关键词

支气管树;  /   / 三维重建;  /   / 数字化模型;  /   / 手术模拟仿真

Key words

Bronchial trees;  /   / Three-dimensional reconstruction;  /   / Digital model;  /   / Surgery simulation

引用本文

导出引用
杨静怡, 胡昕, 姚洁, 徐洲, 杨智, 陈志, 吴毅. 基于中国数字化人体的支气管树三维模型构建及纤维支气管镜手术模拟仿真[J]. 中国临床解剖学杂志. 2023, 41(1): 1-7 https://doi.org/10.13418/j.issn.1001-165x.2023.1.01
Yang Jingyi, Hu Xin, Yao Jie, Xu Zhou, Yang Zhi, Chen Zhi, Wu Yi. The three-dimensional model construction of bronchial tree and the simulation of fiberoptic bronchoscopy surgery based on Chinese Visible Human dataset [J]. Chinese Journal of Clinical Anatomy. 2023, 41(1): 1-7 https://doi.org/10.13418/j.issn.1001-165x.2023.1.01
中图分类号: R322.3    

参考文献

[1]  闫晓伟. 慢性支气管炎的诊断与治疗(附20分析)[J]. 中国社区医师:医学专业, 2014(6):2. DOI: 10.3969/j.issn.1007-614x.2014.6.10.
[2]  Chang AB, Bush A, Grimwood K. Bronchiectasis in children: diagnosis and treatment[J]. The Lancet, 2018, 392(10150):866-879. DOI: 10.1016/S0140-6736(18)31554-X.
[3]  黄海龙,符伟平,龚达聪. 猪肺支气管树三维可视化模型的构建及意义[J]. 局解手术学杂志,2016,1(25):8-11. DOI:10.11659/jjssx. 09E015126.
[4] Qanash S, Hakami OA, Al-Husayni F, et al. Flexible Fiberoptic Bronchoscopy: Indications, Diagnostic Yield and Complications[J]. Cureus, 2020, 12(10): e11122. DOI: 10.7759/cureus.11122.
[5]  Sawy MS, Jayakrishnan B, Behbehani N, et al. Flexible fiberoptic bronchoscopy. Diagnostic yield[J]. Saudi Med J, 2004, 25(10):1459-1463. DOI: 10.1016/j.revmed.2004.06.006.
[6]  Sethi GR, Batra V. Bronchiectasis: causes and management[J]. Indian J Pediatr, 2000, 67(2):133-139. DOI:10.1007/BF02726189.
[7]  Smith B M, Traboulsi H, Austin J, et al. Human airway branch variation and chronic obstructive pulmonary disease[J]. Proc Natl Acad Sci U S A, 2018, 115(5): E974-E981. DOI:10.1073/pnas.1715564115.
[8]  Horsfield K, Relea FG, Gumming G. Diameter, length and branching ratios in the bronchial tree[J]. Respir Physiol, 1976, 26(3):351-356. DOI:10.1016/0034-5687(76)90005-0.
[9]  Ma W, Hu J, Yang M, et al. Application of flexible fiberoptic bronchoscopy in the removal of adult airway foreign bodies[J]. BMC Surg, 2020, 20(1):165. DOI:10.1186/s12893-020-00825-5.
[10]Deng X, Zhou G, Xiao B, et al. Effectiveness evaluation of digital virtual simulation application in teaching of gross anatomy[J]. Ann Anat, 2018, 218:276-282. DOI: 10.1016/j.aanat.2018.02.014.
[11]王志坚, 陈玉英, 杨芳,等. 胎儿心脏数字化三维模型构建[J]. 南方医科大学学报, 2015,34(4):591-593. DOI: 10.3969/j.issn.1673-4254. 2015.04.026.
[12]胡昕, 吴毅, 郭洪峰. 三维便携式文档(3D-PDF)在战现场急救培训中的应用[J]. 军事医学, 2018, 42(12):899-902, 923. DOI: 10.7644 /j. issn. 1674-9960. 2018.12.005.
[13]Fujii S, Muranaka T, Matsubayashi J, et al. The bronchial tree of the human embryo: an analysis of variations in the bronchial segments[J]. J Anat, 2020, 237(2):311-322. DOI:10.1111/joa.13199. 
[14]Horsfield K, Relea FG, Cumming G. Diameter, length and branching ratios in the bronchial tree[J]. Respir Physiol, 1976, 26(3):351-356. DOI:10.1016/0034-5687(76)90005-0.
[15]Chassagnon G, Morel B, Carpentier E, et al. Tracheobronchial branching abnormalities: lobe-based classification scheme[J]. Radiographics, 2016, 36(2):358-73. DOI: 10.1148/rg.2016150115. 
[16]郑宇娜, 黄海龙. 胎儿肺支气管铸型及三维可视化结构的研究[J]. 局解手术学杂志, 2019, 28(6):429-432. DOI:10.11659/jjssx.03E019018.
[17]Meyer ER, Cui D. Anatomy visualizations using stereopsis: assessment and implication of stereoscopic virtual models in anatomical education[J]. Adv Exp Med Biol, 2020,  1235:117-130. DOI:10.1007/978-3-030-37639-0_7.
[18]Gopal M, Skobodzinski AA, Sterbling HM, et al. Bronchoscopy simulation training as a tool in medical school education[J]. Ann Thorac Surg,2018,106(1):280-286. DOI: 10.1016/j.athoracsur. 2018. 02.011.
[19]Nilsson PM, Naur TMH, Clementsen PF, et al. Simulation in bronchoscopy: current and future perspectives[J]. Adv Med Educ Pract, 2017, 8:755-760. DOI: 10.2147/AMEP.S139929. 
[20]Cui D, Chen J, Meyer E, et al. Anatomy visualizations using stereopsis: current methodologies in developing stereoscopic virtual models in anatomical education[J]. Adv Exp Med Biol, 2019, 156:49-65. DOI:10.1007/978-3-030-19385-0_4.
[21]白玉兴. 三维数字化技术在正畸诊断和治疗设计中的应用[J]. 中华口腔医学杂志, 2016, 51(6):326-30. DOI: 10.3760/cma.j.issn.1002-0098.2016.06.002.
[22]Zhao X, Ju Y, Liu C, et al. Bronchial anatomy of left lung: a study of multi-detector row CT[J]. Surg Radiol Anat, 2009, 31(2):85-91. DOI:10.1007/s00276-008-0404-8. Epub 2008 Aug 26.
[23]Fujii S, Muranaka T, Matsubayashi J, et al. Bronchial tree of the human embryo: Categorization of the branching mode as monopodial and dipodial[J]. PLoS One, 2021, 15;16(1): e0245558. DOI: 10.1371/journal.pone.0245558. PMID: 33449967.

基金

重庆市科卫联合医学科研项目(2022ZDXM018);陆军军医大学科技创新能力提升专项项目(2019XYY14);重庆市科技英才项目(CQYC201905037);陆军军医大学优秀人才库重点扶持对象

PDF(8102 KB)

Accesses

Citation

Detail

段落导航
相关文章

/