一种高效的β地中海贫血CD17(A>T)点突变293T细胞系的建立

刘永祥, 蔡炳, 许言, 曾艳红, 周少虎, 麦庆云

中国临床解剖学杂志 ›› 2022, Vol. 40 ›› Issue (5) : 581-586.

PDF(4739 KB)
PDF(4739 KB)
中国临床解剖学杂志 ›› 2022, Vol. 40 ›› Issue (5) : 581-586. DOI: 10.13418/j.issn.1001-165x.2022.5.14
实验研究

一种高效的β地中海贫血CD17(A>T)点突变293T细胞系的建立

  • 刘永祥1,2,    蔡炳2,    许言2,    曾艳红2,    周少虎1,    麦庆云2*
作者信息 +

Establishment of a highly efficient method for β-thalassemia CD17 (A > T) point mutation in HEK293T cell line

  • Liu Yongxiang1,2, Cai Bing2, Xu Yan2, Zeng Yanhong2, Zhou Shaohu1, Mai Qingyun2*
Author information +
文章历史 +

摘要

目的    建立一种高效构建β-地中海贫血CD17(A>T)点突变基因型HEK293T细胞系的方法。  方法    利用改良的CRISPR/Cas9基因编辑技术,即无痕基因组编辑(consecutive re-Guide or re-Cas steps to erase CRISPR/Cas-blocked targets, CORRECT),通过电转染CRISPR/Cas9质粒诱导HEK293T细胞HBB基因切割,同时以引入有CD17(A>T)点突变和同义突变碱基(G>T)的单链寡核苷酸(single-stranded oligo DNA nucleotides, ssODNs)作为同源模板进行重组,经单克隆筛选、测序验证获得β-珠蛋白基因(HBB)点突变CD17(A>T)基因型HEK293T细胞系。  结果    利用“CORRECT”技术成功获得一株β-地贫CD17(A>T)基因型点突变的HEK293T细胞系,同义突变的引入减少Cas9蛋白对靶点不准确的再编辑,提高单碱基突变效率。  结论    通过“CORRECT”技术可以高效获得点突变的293T细胞系,对单碱基突变疾病模型的细胞系及动物模型的建立具有重要意义。

Abstract

Objective   To establish an efficient method for constructing HEK293T cell line of β-thalassemia CD17 (A>T) point mutation.   Methods    Using a modified CRISPR/Cas9 gene editing technology, termed ‘CORRECT’ (consecutive re-Guide or re-Cas steps to erase CRISPR/Cas-blocked targets) for scarless genome editing. Firstly, the cleavage of HBB gene in HEK293T cells was induced by electro-transfection of CRISPR/Cas9 plasmid. Then, single-stranded oligo DNA nucleotides (ssODNs) with CD17 (A>T) point mutation and synonymous mutation (G>T) were used as homologous templates for repair. The HEK293 T cell line with β-globin CD17 (A>T) point mutation was obtained by monoclonal screening and sequencing analysis.    Results    A HEK293T cell line with point mutation of β-thalassemia CD17 (A>T) genotype was successfully obtained by 'CORRECT' technique. The introduction of synonymous mutation might reduced re-editing of Cas9 protein to the target, which greatly improved the efficiency of single base mutation.    Conclusions    The point mutation HEK293T cell line can be efficiently obtained by 'CORRECT' technique, which is of great significance for the establishment of single base mutation cell lines and animal models.

关键词

β-地中海贫血;  /   / CRISPR/Cas9;  /   / 同义突变;  /   / 单碱基突变

Key words

β-thalassemia;  /   / CRISPR/Cas9;  /   / Synonymous mutation;  /   / Single base mutation

引用本文

导出引用
刘永祥, 蔡炳, 许言, 曾艳红, 周少虎, 麦庆云. 一种高效的β地中海贫血CD17(A>T)点突变293T细胞系的建立[J]. 中国临床解剖学杂志. 2022, 40(5): 581-586 https://doi.org/10.13418/j.issn.1001-165x.2022.5.14
Liu Yongxiang, Cai Bing, Xu Yan, Zeng Yanhong, Zhou Shaohu, Mai Qingyun. Establishment of a highly efficient method for β-thalassemia CD17 (A > T) point mutation in HEK293T cell line[J]. Chinese Journal of Clinical Anatomy. 2022, 40(5): 581-586 https://doi.org/10.13418/j.issn.1001-165x.2022.5.14
中图分类号: R556.61   

参考文献

[1]  Kumar R, Sagar C, Sharma D, et al. β-globin genes: mutation hot-spots in the global thalassemia belt [J]. Hemoglobin, 2015, 39(1): 1-8. DOI:10.3109/03630269.2014.985831.
[2]  Cao A, Galanello R. Beta-thalassemia [J]. Geneti Med, 2010, 12(2): 61-76. DOI:10.1097/GIM.0b013e3181cd68ed.
[3]  Kwart D, Paquet D, Teo S, et al. Precise and efficient scarless genome editing in stem cells using CORRECT [J]. Nat Protoc, 2017, 12(2): 329-354. DOI:10.1038/nprot.2016.171.
[4]  Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 [J]. Nature, 2016, 533(7601): 125-129. DOI:10.1038/nature17664.
[5]  Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823.DOI:10.1126/science.1231143.
[6]  Yang B, Yang L, Chen J. Development and application of base editors [J]. CRISPR J, 2019, 2(2): 91-104. DOI:10.1089/crispr.2019.0001.
[7]  Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos [J]. Science, 2019, 364(6437): 289-292. DOI:10.1126/science.aav9973.
[8] Bier E, Harrison MM, O'Connor-Giles KM, et al. Advances in Engineering the Fly Genome with the CRISPR-Cas System [J]. Genetics, 2018, 208(1): 1-18. DOI:10.1534/genetics.117.1113.
[9]  Yu Z, Chen H, Liu J, et al. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome [J]. Biol Open, 2014, 3(4): 271-280. DOI:10.1242/bio.20147682.
[10]Steyer B, Bu Q, Cory E, et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection [J]. Stem Cell Reports, 2018, 10(2): 642-654. DOI:10.1016/j.stemcr.2017.12.004.
[11]Zorin B, Hegemann P, Sizova I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii [J]. Eukaryot Cell, 2005, 4(7): 1264-1272. DOI:10.1128/ec.4.7.1264-1272.2005.
[12]Aarts M, Dekker M, de Vries S, et al. Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells [J]. Nucleic Acids Res, 2006, 34(21): e147. DOI:10.1093/nar/gkl896.
[13]Niu X, He W, Song B, et al. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells [J]. J Biol Chem, 2016, 291(32): 16576-16585. DOI:10.1074/jbc.M116.719237.
[14]Strouse B, Bialk P, Niamat RA, et al. Combinatorial gene editing in mammalian cells using ssODNs and TALENs [J]. Sci Rep, 2014, 4: 3791. DOI:10.1038/srep03791.
[15]Inui M, Miyado M, Igarashi M, et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system [J]. Sci Rep, 2014, 4: 5396. DOI:10.1038/srep05396.

基金

国家自然科学基金面上项目(81270750)

PDF(4739 KB)

Accesses

Citation

Detail

段落导航
相关文章

/