目的 探讨柔性和动态固定方式对枕颈区稳定性的影响。 方法 采用6具新鲜成人枕颈区Oc~C4节段进行测试,模拟以下状态:(1)完整状态;(2)损伤状态:齿状突II型骨折加寰枕关节囊损伤;(3)坚强固定:C1、C2用普通椎弓根螺钉固定,C3侧块螺钉,直径3.5 mm钛棒连接;(4)柔性固定:直径2.0 mm钛棒连接;(5)C1用2枚转动钉固定;(6)C1、C2用4枚转动钉固定;(7)C1、C2、C3用6枚转动钉固定。通过脊柱试验机对标本施加1.5 Nm的纯力偶矩,三维运动测量系统分析枕颈区Oc~C3角度运动范围和中性区。 结果 直径2.0 mm的棒固定后的运动范围,在各个方向上均大于坚强固定,有显著性差异(P<0.05)。与坚强固定比较,在 C1、C2采用2~4枚转动钉固定,在各方向上运动范围相当(P>0.05)。 C1、C2、C3使用6枚转动钉固定仅在旋转方向上明显增加了Oc~C3运动范围,差别有统计学意义(P=0.031)。不同固定方式在屈伸、侧弯和旋转方向上均显著减小了固定节段的中性区(P<0.05)。 结论 枕颈区Oc~C3节段,采用直径2.0 mm的细棒固定,各方向的稳定性均弱于坚强固定。在C1、C2采用2~4枚转动钉固定,与坚强固定的稳定性相当。在C1、C2、C3采用6枚转动钉固定,仅在旋转方向上弱于坚强固定。
Abstract
Objective To analyze the effects of flexible and dynamic fixation on the stability of the occipitocervical region. Methods Biomechanical tests were performed by using six fresh adult cervical spines (occipital bone-C4 segment, Oc~C4), with the fixation site extended from the occipital bone to the C3 vertebra. The following conditions were stimulated: (1) Intact state; (2) Injury state: a combination of type II odontoid fractures and atlanto-occipital capsule injury; (3)Rigid fixation: a 3.5 mm diameter titanium rod was used to connect C3 lateral mass screws, C1, and C2 were fixed with common pedicle screws; (4) Flexible fixation: a 2.0 mm diameter titanium rod was used to fix Oc~C3 with locking connections between the screws and rods; (5) Fixation by using two rotating pedicle screws; (6) C1 and C2 were fixed with four rotating pedicle screws; (7) C1, C2 and C3 were fixed with six rotating pedicle screws. Biomechanical studies were performed by using a spinal testing machine, while applying a constant moment of 1.5 Nm in flexion-extension, left-right lateral bending, and left-right axial rotation directions were measured to analyze the range of motion (ROM) and neutral zone (NZ) of Oc~C3 segments. Results ROM of 2.0mm diameter rod fixation was significantly larger than that of rigid fixation in all directions (P<0.05). Compared with the rigid fixation, ROM of Oc~C3 in C1 and C2with a fixation that used 2~4 rotating pedicle screws was similar in all directions (P>0.05). The application of six rotating pedicle screws in C1~C3 significantly increased ROM for rotation in Oc~C3 with statistical significance (P=0.031). Different fixation methods significantly reduced the neutral zone of fixed segment in flexion, extension, lateral bending and rotation directions (P<0.05). Conclusions In the occipital cervical region Oc~C3, the stability of all directions with using flexible fixation was weaker than that of rigid fixation. In the occipital cervical region, the stability of using two or four rotating screw fixations in C1 and C2 is similar to that of rigid fixation. Using six rotating screw fixations is as stable as rigid fixation in directions of flexion, extension and lateral bending, but weaker in the direction of rotation.
关键词
寰椎;  /
  /
枢椎;  /
  /
枕颈区;  /
  /
柔性固定;  /
  /
动态固定;  /
  /
稳定性;  /
  /
生物力学
Key words
Atlas;  /
  /
Axis;  /
Occipital cervical region;  /
Flexible fixation;  /
Dynamic fixation;  /
  /
Stability;  /
  /
Biomechanics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Biswas JK, Roy S, Rana M, et al. A comparison of rigid, semi-rigid and flexible spinal stabilization devices: A finite element study[J]. Proc Inst Mech Eng H, 2019,233(12):1292-1298. DOI: 10.1177/095441191 9880694.
[2] Bozkuş H, Senoğlu M, Baek S, et al. Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization[J]. J Neurosurg Spine, 2010,12(2):183-189. DOI: 10.3171/2009.9.SPINE0951.
[3] Hsieh Y, Tsuang F, Kuo Y, et al. Biomechanical analysis of single-level interbody fusion with different internal fixation rod materials: a finite element analysis[J]. BMC Musculoskelet Disord, 2020,21(1):1-9. DOI: 10.1186/s12891-020-3111-1.
[4] Liu C, Kamara A, Yan Y. Investigation into the biomechanics of lumbar spine micro-dynamic pedicle screw[J]. BMC Musculoskelet Disord, 2018, 19(1):1-11. DOI:10.1186/s12891-018-2132-5.
[5] Gornet MF, Chan FW, Coleman JC, et al. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs[J]. J Biomech Eng, 2011,133(8):1-13. DOI: 10.1115/1.4004862.
[6] Nohara H, Kanaya F. Biomechanical study of adjacent intervertebral motion after lumbar spinal fusion and flexible stabilization using polyethylene-terephthalate bands[J]. J Spinal Disord Tech, 2004 ,17(3):215-219. DOI: 10.1097/00024720-200406000-00008.
[7] Di Silvestre M, Lolli F, Bakaloudis G, et al. Dynamic stabilization for degenerative lumbar scoliosis in elderly patients[J]. Spine (Phila Pa 1976), 2010 ,35(2):227-234. 10.1097/BRS.0b013e3181bd3be6.
[8] Di Silvestre M, Lolli F, Bakaloudis G. Degenerative lumbar scoliosis in elderly patients: dynamic stabilization without fusion versus posterior instrumented fusion[J]. Spine J, 2014,14(1):1-10. DOI: 10.1016/j.spinee.2012.10.023.
[9] Park H, Zhang H, Cho BY, et al. Change of Lumbar Motion after Multi-Level Posterior Dynamic Stabilization with Bioflex System : 1 Year Follow Up[J]. J Korean Neurosurg Soc, 2009 ,46(4):285-291. DOI: 10.3340/jkns.2009.46.4.285.
[10]Li H, Min J, Zhang Q, et al. Dynamic cervical plate versus static cervical plate in the anterior cervical discectomy and fusion: a systematic review[J]. Eur J Orthop Surg Traumatol, 2013,23 Suppl 1:S41-46. DOI:10.1007/s00590-013-1244-8.
[11] Gao J, Zhao W, Zhang X, et al. MRI analysis of the ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs: a comparison with rigid internal fixation[J]. J Orthop Surg Res, 2014 ,9:43. DOI: 10.1186/1749-799X-9-43.
[12] Selim A, Mercer S, Tang F. Polyetheretherketone (PEEK) Rods for Lumbar Fusion: A Systematic Review and Meta-Analysis[J]. Int J Spine Surg, 2018,12(2): 190-200. DOI: 10.14444/5027.
[13] Kashkoush A, Agarwal N, Paschel E, et al. Evaluation of a Hybrid Dynamic Stabilization and Fusion System in the Lumbar Spine: A 10 Year Experience[J]. Cureus, 2016, 8(6):e637. DOI: 10.7759/cureus.637.
[14]Mavrogenis AF, Vottis C, Triantafyllopoulos G, et al. PEEK rod systems for the spine[J]. Eur J Orthop Surg Traumatol, 2014, 24 Suppl 1:S111-116. DOI: 10.1007/s00590-014-1421-4.
[15] Ohtonari T, Nishihara N, Suwa K, et al. Dynamic Stabilization for Degenerative Spondylolisthesis and Lumbar Spinal Instability[J]. Neurol Med Chir (Tokyo),2014, 54(9):698-706. DOI: 10.2176/nmc.st.2013-0377.
[16] Tan M, Wang H, Wang Y, et al. Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass[J]. Spine (Phila Pa 1976),2003,28(9):888-895. DOI: 10.1097/01.BRS.0000058719.48596.CC.
[17] Kim K, Park WM, Kim YH, et al. Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine[J]. Proc Inst Mech Eng H, 2010,224(3):477-485. DOI: 10.1243/09544119JEIM611.
[18]Korovessis P, Papazisis Z, Koureas G, et al. Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results[J].Spine (Phila Pa 1976), 2004,29(7):735-742. DOI: 10.1097/01.brs. 0000112072.83196.0f.
[19] Lazaro BC, Reyes PM, Newcomb AG, et al. Biomechanics of dynamic rod segments for achieving transitional stiffness with lumbosacral fusion[J]. Neurosurgery, 2013,73(3):517-527. DOI: 10.1227/NEU.0000000000000009.
[20]Dvorak MF, Pitzen T, Zhu Q, et al. Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density[J]. Spine (Phila Pa 1976),2005,30(3):294-301. DOI: 10.1097/01.brs.0000152154.57171.92.
[21]Barrey C, Perrin G, Champain S. Pedicle-Screw-Based Dynamic Systems and Degenerative Lumbar Diseases: Biomechanical and Clinical Experiences of Dynamic Fusion with Isobar TTL[J]. ISRN Orthop, 2013, 2013:1-10. DOI: 10.1155/2013/183702.
[22] 蒋伟宇,于亮,马维虎,等. 寰枢椎后路动态固定系统有效性的实验研究[J]. 中国脊柱脊髓杂志, 2013, 23(12):1097-1100. DOI:10.3969/j.issn.1004-406X.2013.12.08.
[23] 蒋伟宇,于亮,马维虎,等. 一种新型寰枢椎后路动态固定系统的稳定性研究[J]. 中国临床解剖学杂志, 2014, 32(1):76-79. DOI:10.13418/j.issn.1001-165x.2014.01.018.
基金
国家自然科学基金面上项目(81972110);郴州市科学技术局科技发展计划项目(ZDYF2020015);郴州市第一人民医院科研项目(N2019-008);郴州市第一人民医院院内技术项目(2020A34);湘南学院科研项目(2020XJ134)