惯量主轴在桡骨粗隆精确定位中的应用研究

王发圣, 陈杰, 谢昀

中国临床解剖学杂志 ›› 2022, Vol. 40 ›› Issue (2) : 168-172.

PDF(2583 KB)
PDF(2583 KB)
中国临床解剖学杂志 ›› 2022, Vol. 40 ›› Issue (2) : 168-172. DOI: 10.13418/j.issn.1001-165x.2022.2.10
断层影像解剖

惯量主轴在桡骨粗隆精确定位中的应用研究

  • 王发圣, 陈杰, 谢昀*
作者信息 +

Study on the application of inertia principal axis in the precise positioning of the radial tuberosity 

  • Wang Fasheng, Chen Jie, Xie Yun*
Author information +
文章历史 +

摘要

目的 根据CT图像测定水平面上桡骨粗隆相对于桡骨长轴的旋转角度。  方法 44例桡骨标本(左侧17例,右侧27例)CT扫描图像,观察桡骨粗隆形态,选择标志点。根据CT原始图像信息应用Mimics21.0构建桡骨三维模型,分别计算生成桡骨的惯量主轴,建立惯量主轴参考坐标系。统计每例标本桡骨粗隆后侧嵴标志点在水平面上相对桡骨长轴的旋转角度。  结果 桡骨粗隆后侧嵴普遍存在。桡骨的惯量主轴与桡骨的相对位置是稳定的。桡骨粗隆后侧嵴在该水平面坐标参考系上相对桡骨主旋转轴的角度为(82.93 ± 5.55)°。  结论 基于惯量主轴建立的解剖参考坐标系稳定性好,可精确定位桡骨粗隆。

Abstract

Objective To determine the rotation angle of the radial tuberosity relative to the major axis of the radius at the horizontal plane according to theits computed tomography(CT) image. Methods CT images of 44 independent radial specimens (17 on the left and 27 on the right) were scanned to observe the morphology of the radial tuberosity and select the marker points from it. The Mimics21.0 was used to construct the radial three-dimensional (3D) model based on the original CT image information. Then the inertia principal axis of radial was calculated and generated, and the reference coordinate frame of inertia principal axis was established. The rotation angles of the posterior ridge marks on the radial tuberosity on the horizontal plane relative to the major axis in each specimen were calculated and recorded. Results The posterior ridge of radial tuberosity was ubiquitous. The relative position between inertia principal axis and radius was stable. The rotation angle of the posterior ridge of the radial tuberosity relative to the major axis of the radius in the horizontal coordinate frame was (82.93±5.55)°. Conclusions The anatomical reference coordinate frame based on the principal axis of inertia is stable and can be used to precisely locate the radial tuberosity.

关键词

桡骨粗隆 /  惯量主轴 /  解剖参考坐标系

Key words

  / Radial tuberosity /  Inertia principal axis /  Anatomical reference coordinate frame

引用本文

导出引用
王发圣, 陈杰, 谢昀. 惯量主轴在桡骨粗隆精确定位中的应用研究[J]. 中国临床解剖学杂志. 2022, 40(2): 168-172 https://doi.org/10.13418/j.issn.1001-165x.2022.2.10
Wang Fasheng, Chen Jie, Xie Yun. Study on the application of inertia principal axis in the precise positioning of the radial tuberosity [J]. Chinese Journal of Clinical Anatomy. 2022, 40(2): 168-172 https://doi.org/10.13418/j.issn.1001-165x.2022.2.10
中图分类号:      R322   

参考文献

[1]  Mazzocca AD, Cohen M, Berkson E, et al. The anatomy of the bicipital tuberosity and distal biceps tendon[J]. J Shoulder Elbow Surg, 2007, 16(1): 122-127. DOI: 10.1016/j.jse.2006.04.012.
[2] Hutchinson HL, Gloystein D, Gillespie M. Distal biceps tendon insertion: an anatomic study[J]. J Shoulder Elbow Surg, 2008, 17(2): 342-346. DOI: 10.1016/j.jse.2007.05.005.
[3]  Foote J, Raman A. A relation between the principal axes of inertia and ligand binding[J]. Proc Natl Acad Sci U S A, 2000, 97(3): 978-983. DOI: 10.1073/pnas.97.3.978.
[4]  Krantz SG, Mccarthy JE, Parks HR, et al. Geometric characterizations of centroids of simplices[J]. J Math Anal Appl, 2006, 316(1): 87-109. DOI: 10.1016/j.jmaa.2005.04.046.
[5] Morrey B, Askew L, An K, et al. Rupture of the distal tendon of the biceps brachii. A biomechanical study[J]. J Bone Joint Surg Am, 1985, 67(3): 418-421. 
[6] El-Hawary R, Macdermid JC, Faber KJ, et al. Distal biceps tendon repair: comparison of surgical techniques[J]. J Hand Surg Am, 2003, 28(3): 496-502. DOI: 10.1053/jhsu.2003.50081.
[7] Rochefort G, Champagnat F, Le Besnerais G, et al. An improved observation model for super-resolution under affine motion[J]. IEEE Trans Image Process, 2006, 15(11): 3325-3337. DOI: 10.1109/tip.2006.881996.
[8] Fan YZ, Luo LP, Djuric M, et al. Extracting cross-sectional clinical images based on their principal axes of inertia[J]. Scanning, 2017, 2017: 1468596. DOI: 10.1155/2017/1468596.
[9] Miranda DL, Rainbow MJ, Leventhal EL, et al. Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee[J]. J Biomech, 2010, 43(8): 1623-1636. DOI: 10.1016/j.jbiomech.2010.01.036.
[10]Canovas F, Roussanne Y, Captier G, et al. Study of carpal bone morphology and position in three dimensions by image analysis from computed tomography scans of the wrist[J]. Surg Radiol Anat, 2004, 26(3): 186-190. DOI: 10.1007/s00276-003-0207-x.
[11]Kim SG, Kim DS, Choi SC, et al. The relationship between three-dimensional principal rotations and mandibular deviation[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endos, 2010, 110(5): e52-e60. DOI: 10.1016/j.tripleo.2010.07.006.
[12]Best G, Mack Z, Pichora D, et al. Differences in the rotation axes of the scapholunate joint during flexion-extension and radial-ulnar deviation motions[J]. J Hand Surg Am, 2019, 44(9): 772-778. DOI: 10.1016/j.jhsa.2019.05.001.
[13]Camacho DLA, Ledoux WR, Rohr ES, et al. A three-dimensional, anatomically detailed foot model: a foundation for a finite element simulation and means of quantifying foot-bone position[J]. J Rehabil Res Dev, 2002, 39(3): 401-410. PMID: 12173760.
[14]Aguado-Henche S, Morante-Martínez P, Cristóbal-Aguado S, et al. Study of human radius construction systematics: evaluation by DXA in dry bone[J]. Eur J Orthop Surg Traumatol, 2019, 29(2): 389-396. DOI: 10.1007/s00590-018-2311-y.

PDF(2583 KB)

Accesses

Citation

Detail

段落导航
相关文章

/