METTL3调控SPRING1促进巨噬细胞脂质蓄积

贾波, 杨宙, 喻广力, 吕运成, 彭田红

中国临床解剖学杂志 ›› 2021, Vol. 39 ›› Issue (6) : 686-691.

PDF(2762 KB)
PDF(2762 KB)
中国临床解剖学杂志 ›› 2021, Vol. 39 ›› Issue (6) : 686-691. DOI: 10.13418/j.issn.1001-165x.2021.06.013
实验研究

METTL3调控SPRING1促进巨噬细胞脂质蓄积

  • 贾波1,    杨宙1,    喻广力1,    吕运成2,    彭田红1
作者信息 +

METTL3 regulates SPRING1 and promotes lipid accumulation in macrophages

  • Jia Bo1, Yang Zhou1, Yu Guangli1, Lv Yuncheng2, Peng Tianhong1
Author information +
文章历史 +

摘要

 目的    探讨METTL3调控SPRING1促进巨噬细胞脂质蓄积的作用及机制。  方法    100 ng/mL PMA诱导THP-1细胞贴壁后,50 μg/mL Ac-LDL孵育THP-1细胞。Western blot测定METTL3和SPRING1蛋白;qRT-PCR测定SPRING1mRNA水平;细胞内总胆固醇、胆固醇酯以及游离胆固醇变化用高效液相色谱法检测;SRAMP和RMBase网站分析SPRING1 mRNA上的m6A修饰位点情况;质膜红色荧光标记探针Dil-Ac-LDL观察巨噬细胞脂滴摄取情况。  结果    与对照组相比,Ac-LDL孵育后THP-1细胞METTL3和SPRING1蛋白表达上调,并且SPRING1 mRNA水平上调;过表达METTL3会使SPRING1蛋白表达上调,巨噬细胞对脂质摄取增加,细胞内Dil-Ac-LDL明显增多;反之,沉默METTL3表达,SPRING1蛋白表达下调;甲基化抑制剂环亮氨酸处理可部分抑制METTL3过表达对SPRING1表达的促进作用;生物信息学分析显示,SPRING1 mRNA存在m6A修饰位点。  结论    METTL3上调SPRING1表达,促进巨噬细胞脂质蓄积。

Abstract

Objective    To investigate the effect and mechanism of METTL3 regulating SPRING1 on macrophage lipid accumulation.     Methods    After inducing the attachment of THP-1 cells with 100 ng/ml PMA, 50 μg/ml Ac-LDL was added to incubate THP-1 cells.  The protein levels of METTL3 and SPRING1 were detected by Western blot and the mRNA levels was detected by qRT-PCR. The total cholesterol (TC), cholesterol ester (CE) and free cholesterol (FC) were detected by high performance liquid chromatography (HPLC). SRAMP and RMBase websites were used to analyze the m6A modification sites on the SPRING1 mRNA. The Oil red O staining and plasma membrane red fluorescent-labeled probe Dil-Ac-LDL were used to observe the uptake of lipid droplets in macrophages.   Results   Compared with the control group, the protein level of METTL3 and SPRING1 in THP-1 cells was upregulated; the SPRING1 mRNA level was also upregulated after Ac-LDL incubation. Overexpression of METTL3 upregulated the expression of SPRING1 protein, increased the uptake Dil-Ac-LDL by macrophages. While METTL3 silence obviously downregulated the expression of SPRING1 protein. Cycloleucine, as a methylation inhibitor, can partially inhibit the promotion of METTL3 overexpression on SPRING1. Bioinformatics analysis showed that there were m6A modification sites in SPRING1 mRNA.   Conclusions    METTL3 upregulates the expression of SPRING1 and promotes lipid accumulation in macrophages.

关键词

METTL3 /  m6A /  SPRING1 /  脂质蓄积

Key words

METTL3 /   /   / M6A /   /   / SPRING1 /   /   / Lipid accumulation

引用本文

导出引用
贾波, 杨宙, 喻广力, 吕运成, 彭田红. METTL3调控SPRING1促进巨噬细胞脂质蓄积[J]. 中国临床解剖学杂志. 2021, 39(6): 686-691 https://doi.org/10.13418/j.issn.1001-165x.2021.06.013
Jia Bo, Yang Zhou, Yu Guangli, Lv Yuncheng, Peng Tianhong. METTL3 regulates SPRING1 and promotes lipid accumulation in macrophages[J]. Chinese Journal of Clinical Anatomy. 2021, 39(6): 686-691 https://doi.org/10.13418/j.issn.1001-165x.2021.06.013
中图分类号: Q54   

参考文献

[1]  代长良, 田野. 巨噬细胞在动脉粥样硬化及血管炎症中作用的研究进展[J]. 心血管康复医学杂志, 2021, 30(1): 75-78. DOI: 10.3969/j.issn.1008-0074.2021.01.19. 
[2]  李博, 聂欣, 魏薇, 等. 成年疗养员血脂异常现状与动脉粥样硬化性心血管病危险评估[J]. 中国疗养医学, 2021, 30(5): 456-459. DOI: 10.13517/j.cnki.ccm.2021.05.003.
[3]  姜志胜. 动脉粥样硬化学[M]. 北京: 科学出版社, 2017.
[4]  齐炳才, 靳琦文, 胡杰, 等. 颈动脉粥样硬化斑块内新生血管的研究现状及进展[J]. 中国动脉硬化杂志, 2021, 29(4): 359-362, 368. DOI: 10.3969/j.issn.1007-3949.2021.04.016.
[5]  张翔, 杜娟, 陈雅慧, 等. mRNA m6A甲基化修饰异常与疾病的研究进展[J]. 生命的化学, 2019, 39(2): 255-261. DOI: 10.13488/j.smhx.20180098.
[6] Zhao BS, He C. Fate by RNA methylation: m6A steers stem cell pluripotency[J]. Genome Biol, 2015, 16(1): 43. DOI: 10.1186/s13059-015-0609-1.
[7]  Wu RF, Yao YX, Jiang Q, et al. Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m(6)A-YTHDF2-dependent manner[J]. Int J Obesity (Lond), 2018, 42(7): 1378-1388. DOI: 10.1038/s41366-018-0082-5.
[8] Lu N, Li XM, Yu JY, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6) a RNA methylation in piglets[J]. Lipids, 2018, 53(1): 53-63. DOI: 10.1002/lipd.12023.
[9]  Loregger A, Raaben M, Nieuwenhuis J, et al. Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism[J]. Nat Commun, 2020, 11(1): 1128. DOI: 10.1038/s41467-020-14811-1.
[10]Bayraktar, EC, La K, Karpman K, et al. Metabolic coessentiality mapping identifies C12orf49 as a regulator of SREBP processing and cholesterol metabolism[J]. Nat Metab, 2020, 2(6): 487-498. DOI: 10.1038/s42255-020-0206-9.
[11]穆文娟, 杨丽洁, 宋赛赛, 等. 不同脂肪组织与动脉粥样硬化关系的研究进展[J]. 生命科学, 2021, 33(2): 166-175. DOI: 10.13376/j.cbls/2021019.
[12] 万密密, 赵梓楠, 李婷, 等. 动脉粥样硬化治疗的新思路[J]. 江苏大学学报(医学版), 2021, 31(1): 1-5. DOI: 10.13312/j.issn.1671-7783.y200250.
[13]Tada H, Nohara A, Inazu A, et al. Remnant lipoproteins and atherosclerotic cardiovascular disease[J]. Clin Chim Acta, 2019, 490: 1-5. DOI: 10.1016/j.cca.2018.12.014.
[14] Lee J, Choi JH. Deciphering macrophage phenotypes upon lipid uptake and atherosclerosis[J]. Immune Netw, 2020, 20(3): e22. DOI: 10.4110/in.2020.20.e22.
[15]Zhao ZC, Meng JX, Su R, et al. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential[J]. J Hepatol, 2020, 73(3): 664-679. DOI: 10.1016/J.JHEP.2020.04.009.
[16]Zhong H, Tang HF, Kai Y. N6-methyladenine RNA modification (m6A): an emerging regulator of metabolic diseases[J]. Curr Drug Targets, 2020, 21(11): 1056-1067. DOI: 10.2174/13894501216662002 10125247.
[17]Song TX, Yang Y, Jiang SW, et al. Novel insights into adipogenesis from the perspective of transcriptional and RNA N6-methyladenosine-mediated post-transcriptional regulation[J]. Adv Sci (Weinh), 2020, 7(21): 2001563. DOI: 10.1002/advs.202001563.
[18] Xiao J, Xiong YN, Yang LT, et al. POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation[J]. Protein Cell, 2021, 12(4): 279-296. DOI: 10.1007/S13238-020-00753-3.

基金

湖南省自然科学基金项目(2020JJ4532);湖南省教育厅优秀青年项目(18B264)

PDF(2762 KB)

Accesses

Citation

Detail

段落导航
相关文章

/