目的 利用影像资料构建骨盆三维模型,探究臼杯边缘与髋臼骨性边缘的解剖位置关系,辅助全髋关节置换术中徒手臼杯定位。 方法 选取正常髋臼及Crowe Ⅱ/Ⅲ型DDH患者髋臼的CT断层图像,使用三维规划软件BOHOLO模拟全髋关节置换术植入目标臼杯(方位:前倾角20 °,外展角40 °,骨床-臼杯覆盖率>75%),在右侧髋臼的1、4、7、10点钟4个方向,测量臼杯外露长度即臼杯边缘与髋臼骨性边缘的距离,并作统计分析。 结果 对于正常髋臼及Crowe Ⅱ/Ⅲ型DDH髋臼,臼杯目标方位的垂直高度分别为(16.26±0.93)mm,(22.09±4.10)mm;各方向髋臼边缘外露长度,髋臼正常组与DDH组有统计学差异(P<0.05),正常髋臼后下壁(右髋7点钟,左髋5点钟)的外露长度为(9.71±1.68)mm,变异度较小,不同性别、年龄无明显差异。 结论 髋臼后下壁的外露长度可作为正常臼杯定位相对恒定的解剖学参照,据此原位重建臼杯可获得满意的骨床-臼杯覆盖率,而对于Crowe Ⅱ/Ⅲ型患者,各向髋臼骨缘外露长度的变异较大。
Abstract
Objective To explore the anatomical positional relationship between the edge of the acetabular cup and the edge of the osseous acetabulum by utilizing the imaging data to reconstruct pelvis 3D model, and to improve the accuracy of intraoperative freehand acetabular cup orientation. Methods Based on the CT data of normal acetabulum and Crowe Ⅱ/Ⅲ DDH acetabulum, 3D planning software was used to stimulate the implantation of target acetabular cup in total hip arthroplasty (orientation: anteversion angle was 20°, abduction angle was 40°, acetabular bony coverage rate was more than 75%). In the 1,4,7,10 o’clock four directions of the right acetabulum, the exposed length of the acetabulum cup, which was the distance between the edge of the acetabular cup and the bony edge of the acetabular, was recorded and statistically analyzed. Results The optimal vertical height of the cup implantation for normal acetabulum and Crowe type Ⅱ/Ⅲ DDH acetabulum were (16.26±0.93) mm and (22.09±4.10)mm, respectively. There was statistical differences (P<0.05) between the normal group and the DDH group of exposed length in four directions. The exposed length of the posterior inferior wall of the normal acetabulum (7 o 'clock direction in the right hip, 5 o 'clock direction in the left hip) was (9.71±1.68) mm. The coefficient of variation of the exposed distance in other directions has no obvious difference in different genders and ages. Conclusions The exposed length of the posterior inferior acetabular wall is relatively constant to be utilized as an anatomical reference landmark for THA in normal acetabulum, while for Crowe type II/III patients, there is a great variation in the length of the acetabulum edge exposure in all directions.
关键词
发育性髋关节发育不良 /
人工髋关节 /
臼杯 /
影像解剖学 /
计算机模拟手术
Key words
Developmental dysplasia of the hip /
Artificial acetabulum /
Positions of the acetabular cup /
Imaging anatomy /
Computer assisted orthopedic surgery
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Opperer M, Lee YY, Nally F, et al. A critical analysis of radiographic factors in patients who develop dislocation after elective primary total hip arthroplasty[J]. Int Orthop, 2016, 40(4): 703-708. DOI: 10.1007/s00264-015-3022-1.
[2] Shah SM, Walter WL, Tai SM, et al. Late dislocations after total hip arthroplasty: is the bearing a factor[J]? J Arthroplasty, 2017, 32(9): 2852-2856. DOI: 10.1016/j.arth.2017.04.037.
[3] Gwam CU, Mistry JB, Mohamed NS, et al. Current epidemiology of revision total hip arthroplasty in the United States: national inpatient sample 2009 to 2013[J]. J Arthroplasty, 2017, 32(7): 2088-2092. DOI: 10.1016/j.arth.2017.02.046.
[4] Nakamura N, Nishii T, Kitada M, et al. Application of computed tomography-based navigation for revision total hip arthroplasty[J]. J Arthroplasty, 2013, 28(10): 1806-1810. DOI: 10.1016/j.arth. 2012. 11. 015.
[5] Nogler M, Polikeit A, Wimmer C, et al. Primary stability of a robodoc implanted anatomical stem versus manual implantation[J]. Clin Biomech (Bristol, Avon), 2004, 19(2): 123-129. DOI: 10.1016/j.clinbiomech. 2003.09.010.
[6] Kayani B, Konan S, Ayuob A, et al. The current role of robotics in total hip arthroplasty[J]. EFORT Open Rev, 2019, 4(11): 618-625. DOI: 10.1302/2058-5241.4.180088.
[7] Mihalko WM, Kammerzell S, Saleh KJ. Acetabular orientation with different pelvic registration landmarks[J]. Orthopedics, 2009, 32(10 Suppl): 11-13. DOI: 10.3928/01477447-20090915-51.
[8] Archbold H, Slomczykowski M, Crone M, et al. The relationship of the orientation of the transverse acetabular ligament and acetabular labrum to the suggested safe zones of cup positioning in total hip arthroplasty[J]. Hip Int, 2008, 18(1): 1-6. DOI: 10.5301/hip.2008.1755.
[9] Maruyama M, Feinberg JR, Capello WN, et al. The Frank Stinchfield Award: Morphologic features of the acetabulum and femur: anteversion angle and implant positioning[J]. Clin Orthop Relat Res, 2001, (393): 52-65. PMID: 11764371.
[10]Tserovski S, Georgieva S, Simeonov R, et al. Advantages and disadvantages of 3D printing for pre-operative planning of revision hip surgery[J]. J Surg Case Rep, 2019, 2019(7): rjz214. DOI: 10.1093/jscr/rjz214.
[11]Archbold HAP, Mockford B, Molloy D, et al. The transverse acetabular ligament: an aid to orientation of the acetabular component during primary total hip replacement: a preliminary study of 1000 cases investigating postoperative stability[J]. J Bone Joint Surg Br, 2006, 88(7): 883-886. DOI: 10.1302/0301-620x.88b7.17577.
[12]Jauregui JJ, Pierce TP, Elmallah RK, et al. Dual mobility cups: an effective prosthesis in revision total hip arthroplasties for preventing dislocations[J]. Hip Int, 2016, 26(1): 57-61. DOI: 10.5301/hipint. 5000295.
[13]Epstein NJ, Woolson ST, Giori NJ. Acetabular component positioning using the transverse acetabular ligament: can you find it and does it help[J]? Clin Orthop Relat Res, 2011, 469(2): 412-416. DOI: 10.1007/s11999-010-1523-1.
[14]Meermans G, Van Doorn WJ, Koenraadt K, et al. The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement: a randomised controlled trial[J]. Bone Joint J, 2014, 96-B(3): 312-318. DOI: 10.1302/0301-620x.96b3.32989.
[15]Wang S, Wang L, Liu Y, et al. 3D printing technology used in severe hip deformity[J]. Exp Ther Med, 2017, 14(3): 2595-2599. DOI: 10.3892/etm.2017.4799.
[16]Sariali E, Boukhelifa N, Catonne Y, et al. Comparison of three-dimensional planning-assisted and conventional acetabular cup positioning in total hip arthroplasty: a randomized controlled trial[J]. J Bone Joint Surg Am, 2016, 98(2): 108-116. DOI: 10.2106/jbjs.N.00753.
[17]Noble PC, Sugano N, Johnston JD, et al. Computer simulation: how can it help the surgeon optimize implant position[J]? Clin Orthop Relat Res, 2003, (417): 242-252. DOI: 10.1097/01.blo.0000096829.67494.dc.
基金
东莞市社会科技发展重点项目(2018507150011650);广东省科技计划项目(2017B020227005)