目的 探讨聚柠檬酸复合纳米羟基磷灰石(POC-Click-HA)制作的新型生物可吸收松质骨螺钉治疗比格犬股骨外髁骨折的生物相容性及生物力学特性。 方法 健康成年比格犬9只,雌雄不限,体重8~11 kg,制备双侧股骨外髁骨折(AO分型33.B1型)模型。右侧采用POC-click-HA可吸收松质骨螺钉固定,作为实验组;左侧采用聚消旋乳酸PDLLA可吸收松质骨螺钉固定,作为对照组。术后观察实验动物一般情况,分别于术后4周、8周、12周处死3只动物,取材行大体观察、Lane-Sandhu组织学评分及生物力学分析。 结果 实验动物均存活至实验完成。大体观察两组骨折无移位,均于12周愈合,POC-click-HA组螺钉可见有新生骨组织从螺钉表面向内部生长。术后3个时间点对骨折部位进行Lane-Sandhu组织学评分,两组螺钉之间无统计学差异(P>0.05)。生物力学测试,4周POC-click-HA组钉-骨界面最大载荷低于PDLLA组(P<0.05),8周和12周两者无显著差异(P>0.05)。 结论 POC-click-HA松质骨螺钉具有良好的生物相容性,生物力学性能满足固定比格犬股骨外侧髁B1型骨折。
Abstract
weighing, 8-11 kg) were selected to prepare the models (AO classification type: B1) of bilateral lateral femoral condyle fracture. Right fracture was fixed with POC-click-HA absorbable cannulated screws as an experimental group and left fracture with Poly-DL-Lactic acid(PDLLA) screws as a control group. At 4, 8, and 12 weeks after operation, general observation was done, Lane - Sandhu histologic grading, biomechanics were taken for observing fracture healing. Results All aniamls survived to the end of the experiment. General observations showed that no fracture displacement occurred and fracture healed at 12 weeks in the two groups. POC - click - HA screws degraded and new bone tissue was found from samples at 12 weeks. According to the Lane - Sandhu histologic grading, , there was no statistical difference between two groups in the screws at 4, 8, and 12 weeks after operation (P>0.05). Biomechanics test showed that the maximum load at the nail-bone interface of the POC-click-HA group was lower than that of the PDLLA group at 4 weeks after operation (P<0.05). While there was no significant difference between the two groups at 8 weeks and 12 weeks (P>0.05). Conclusions Citric acid polymer composite hydroxyapatite (POC-click-HA) screw has good biocompatibility and biomechanics,which can be better utilized for Beagles’ lateral femoral condyle B1 fractures.
关键词
可降解骨螺钉 /
股骨外髁骨折 /
柠檬酸 /
生物相容性 /
生物力学
Key words
Biodegradable bone screws; Lateral femoral epicondyle fracture; Citric acid;  /
Biocompatibility; Biomechanics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Hofmann GO. Biodegradable implants in traumatology: a review on the state-of-the-art[J]. Arch Orthop Trauma Surg, 1995, 114(3): 123-132. DOI: 10.1007/BF00443385.
[2] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials, 2000, 21(23): 2335-2346. DOI: 10.1016/s0142-9612(00)00101-0.
[3] Ellenrieder M, Steinhauser E, Bader R, et al. How stiffness and distal interlocking of revision hip stems influence the femoral cortical strain pattern[J]. J Orthop Sci, 2012, 17(3): 205-212. DOI: 10.1007/s00776-012-0201-4.
[4] Lee WT, Koak JY, Lim YJ, et al. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(4): 1044-1052. DOI: 10.1002/jbm.b.32669.
[5] Althuizen MNR, Hoff MLV, Berg-v Erp SHMvd, et al. Early failures in large head metal-on-metal total hip arthroplasty[J]. Hip Int, 2012, 22(6): 641-647. DOI: 10.5301/HIP.2012.10340.
[6] Zhang SX, Zhang XN, Zhao CL, et al. Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater, 2010, 6(2): 626-640. DOI: 10.1016/j.actbio.2009.06.028.
[7] Burdick JA, Frankel D, Dernell WS, et al. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect[J]. Biomaterials, 2003, 24(9): 1613-1620. DOI: 10.1016/s0142-9612(02)00538-0.
[8] Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers[J]. Biotechnol Annu Rev, 2006, 12: 301-347. DOI: 10.1016/S1387-2656(06)12009-8.
[9] Dickens F. The citric acid content of animal tissues, with reference to its occurrence in bone and tumour[J]. Biochem J, 1941, 35(8-9): 1011-1023. DOI: 10.1042/bj0351011.
[10]Hartles RL. Citrate in mineralized tissues[J]. Adv Oral Biol, 1964, 1: 225-253. DOI: 10.1016/b978-1-4832-3117-4.50014-0.
[11]Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone[J]. Proc Natl Acad Sci U S A, 2010, 107(52): 22425-22429. DOI: 10.1073/pnas.1009219107.
[12]Davies E, Müller KH, Wong WC, et al. Citrate bridges between mineral platelets in bone[J]. Proc Natl Acad Sci U S A, 2014, 111(14): E1354-E1363. DOI: 10.1073/pnas.1315080111.
[13]Costello LC, Chellaiah M, Zou J, et al. The status of citrate in the hydroxyapatite/collagen complex of bone; and Its role in bone formation[J]. J Regen Med Tissue Eng, 2014, 3: 4. DOI: 10.7243/2050-1218-3-4.
[14]Xie D, Guo J, Mehdizadeh M, et al. Development of Injectable Citrate-Based Bioadhesive Bone Implants[J]. J Mater Chem B, 2015, 3: 387-398. DOI: 10.1039/C4TB01498G.
[15]Sun D, Chen YH, Tran RT, et al. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration[J]. Sci Rep, 2014, 4: 6912. DOI: 10.1038/srep06912.
[16]Guo Y, Tran RT, Xie DH, et al. Citrate-based biphasic scaffolds for the repair of large segmental bone defects[J]. J Biomed Mater Res A, 2015, 103(2): 772-781. DOI: 10.1002/jbm.a.35228.
[17]Guo JS, Xie ZW, Tran RT, et al. Click chemistry plays a dual role in biodegradable polymer design[J]. Adv Mater, 2014, 26(12): 1906-1911. DOI: 10.1002/adma.201305162.
[18] Tran RT, Wang L, Zhang C, et al. Synthesis and characterization of biomimetic citrate-based biodegradable composites[J]. J Biomed Mater Res A, 2014, 102(8): 2521-2532. DOI: 10.1002/jbm.a.34928.
[19]谭新宇. 异种生物骨钉的实验研究[D]. 广州: 广州医科大学, 2010. DOI: 10.7666/d.d124434.
[20]康展荣, 黄秋英, 黄建明, 等. 生物可吸收螺钉在下胫腓联合损伤中的应用进展[J]. 中华创伤骨科杂志, 2018, 20(7): 639-644. DOI: 10.3760/cma.j.issn.1671-7600.2018.07.017.
[21] 王毅, 徐永清, 陈东源, 等. 可吸收手舟骨螺钉的研制和生物力学研究[J]. 中国临床解剖学杂志, 2009, 27(3): 329-332. DOI: CNKI:SUN:ZLJZ.0.2009-03-029.
[22] 秦金桥, 黄潮桐, 陈隆福, 等. 多指再植可吸收髓内钉与克氏针内固定效果比较研究[J]. 中国临床解剖学杂志, 2009, 27(1): 100-102, 105. DOI: CNKI:SUN:ZLJZ.0.2009-01-038.
[23]温晓东, 鹿军, 赵宏谋, 等. 金属与可吸收螺钉固定下胫腓联合损伤比较[J]. 中国矫形外科杂志, 2020, 28(8): 676-681. DOI: CNKI:SUN:ZJXS.0.2020-08-003.
[24]薛清佩, 邹云涛, 潘进贤, 等. 可吸收螺钉治疗不同类型的内踝骨折[J]. 中华关节外科杂志(电子版), 2020, 14(1): 124-127. DOI: 10.3877/cma.j.issn.1674-134X.2020.01.023.