Study on the characteristics of infrared thermography in children with cerebral palsy
Bai Wenfang1, Yang Wanxin2, Yu Xiaotang3, Huang Hongliang3, Xu Weicheng1, Liu Lanren4, Fan Yangang4, Huang Xuming2, Zhang Mingsheng1
Author information+
1.Department of Rehabilitaion Medicine, Guangdong Geriatric institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China;2. Department of Rehabilitation Medicine,The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China;3.Rehabilitation Hospital of Guangzhou Social Welfare Institute,Guangzhou 510000, China;4. Guangzhou Noninvasive Medical Technology Co., Ltd., Guangzhou 510290, China
Objective To observe and compare the infrared thermogram of children with cerebral palsy and normal children, and to explore and analyze the characteristics of the thermogram of children with cerebral palsy, so as to provide reference for clinical application. Methods Children with cerebral palsy (n=42) and normal children (n=42) were selected as an observation group and a control group respectively. The whole body thermal images of children were collected by TMI-BX1 portable infrared thermal image temperature measurement system. The average temperature values of 11 points which included forehead, chest, upper abdomen, lower abdomen, fourth thoracic vertebra(T4), twelfth thoracic vertebra(T12), fourth lumber vertebra(L4), left and right palms, dorsum pedis of each child were grabbed and analyzed by computer. Results There was no significant difference in the temperature of the left and right extremities between the two groups (P>0.05). The head and trunk temperatures of the two groups were higher than the extremities (P < 0.01). The extreme difference between the highest temperature and the lowest temperature was greater in the observation group than that of the control group (P<0.05). The temperature of the forehead was significantly lower than that of abdomen(P<0.01) in both of the two groups. The temperature of the abdomen was significantly higher in the observation group than that in the back (P<0.01), but significantly lower in the control group (P<0.01). Conclusions The abdominal temperature of children with cerebral palsy is higher than that of children with back, but that of normal childrem is lower than that of children with back. The characteristics of thermal imaging can provide reference for clinical research.
Bai Wenfang, Yang Wanxin, Yu Xiaotang, Huang Hongliang, Xu Weicheng, Liu Lanren, Fan Yangang, Huang Xuming, Zhang Mingsheng.
Study on the characteristics of infrared thermography in children with cerebral palsy[J]. Chinese Journal of Clinical Anatomy. 2021, 39(1): 95-100 https://doi.org/10.13418/j.issn.1001-165x.2021.01.018
中图分类号:
R493
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李晓捷, 唐久来. 以循证医学为依据的脑性瘫痪早期诊断与早期干预[J]. 华西医学, 2018, 33(10): 1213-1218. DOI:10.7507/1002-0179.201805128.
[2] 丁晶, 周志尊, 李帅三. 医用红外线热成像技术的物理学原理探析[J]. 中国医疗设备, 2010, 25(7): 68-70. DOI: 10.3969/j.issn.1674-1633.2010.07.026.
[3] 春晓, 潘丽艳, 林艳. 基于万方与CNKI数据库的红外热成像技术医学应用的文献计量学研究[J]. 中国医疗设备, 2019, 34(7): 165-169. DOI: CNKI:SUN:YLSX.0.2019-07-043.
[4] 炉庆洪, 杨洪钦, 陈丽, 等. 正常青年体表温度分布的红外热像分析[J]. 中国生物医学工程学报, 2007, 26(4): 528-531. DOI: 10.3969/j.issn.0258-8021.2007.04.010.
[5] 高歌, 张利岩, 沈志奇, 等. 红外线体温测量仪不同部位测量结果与实际体温的差异比较[J]. 解放军护理杂志, 2004, 21(6): 98. DOI: 10.3969/j.issn.1008-9993.2004.06.064.
[6] 曾菊华, 马逸文, 龙顺兰. 智能红外线测温仪在小儿不同部位测量的效果观察[J]. 长江大学学报, 2014, 11(18): 78-80. DOI: CNKI:SUN:CJDL.0.2014-18-037
[7] 冯年春, 章莹. 红外成像与经络理论的研究进展[J]. 中医临床研究, 2019, 11(20): 146-148. DOI: 10.3969/j.issn.1674-7860.2019.20.057.
[8] 朱小香, 王舰, 萨喆燕, 等. 电子灸诱发任督二脉红外辐射轨迹实验观察[J]. 辽宁中医药大学学报, 2016, 18(7): 130-133. DOI:10.13194/j.issn.1673-842x.2016.07.039.
[9] 高毅洁. 不同程度血压的心、脑、肾红外热成像特征及其与中医证型的关联研究[D]. 北京: 北京中医药大学, 2018.
[10] Gogoi UR, Bhowmik MK, Bhattacharjee D, et al. Singular value based characterization and analysis of thermal patches for early breast abnormality detection[J]. Australas Phys Eng Sci Med, 2018, 41(4): 861-879. DOI: 10.1007/s13246-018-0681-4.
[11] 林燕娴, 宋维铭. 扩张皮瓣血运障碍监测技术及防治研究进展[J]. 中国修复重建外科杂志, 2018, 32(1): 118-124. DOI:10.7507/1002-1892.201708056.
[12]Thiruvengadam J, Mariamichael A. A preliminary study for the assessment of hypertension using static and dynamic IR thermograms[J]. Biomed Tech (Berl), 2018, 63(2): 197-206. DOI: 10.1515/bmt-2016-0237.
[13] 李寿鵬, 续琴, 冯燕, 等. 红外线热成像仪评价组织坏死期血栓闭塞性脉管炎的治疗效果[J]. 血管与腔内血管外科杂志, 2018, 4(6): 20-25. DOI: CNKI:SUN:XGQW.0.2018-06-004.
[14] 吕兴, 杨镒宇, 邓皓晖, 等. 红外线热成像测温在诊断脓毒性休克的意义[J]. 广东医学, 2019, 40(8): 1142-1146. DOI: CNKI:SUN:GAYX.0.2019-08-025.
[15] Keenan E, Gethin G, Flynn L, et al. Enhanced thermal imaging of wound tissue for better clinical decision making[J]. Physiol Meas, 2017, 38(6): 1104-1115. DOI: 10.1088/1361-6579/aa6ea0.
[16] Svedberg LE, Stener-Victorin E, Nordahl G, et al. Skin temperature in the extremities of healthy and neurologically impaired children[J]. Eur J Paediatr Neurol, 2005, 9(5): 347-354. DOI: 10.1016/j.ejpn. 2005. 06. 001.
[17] Merla A, Mattei PA, Di Donato L, et al. Thermal imaging of cutaneous temperature modifications in runners during graded exercise[J]. Ann Biomed Eng, 2010, 38(1): 158-163. DOI: 10.1007/s10439-009-9809-8.
[18] 王乐鹏, 龙晓华, 李洪娟, 等. 健康人体红外热像四时变化规律的初步研究[J]. 中华中医药杂志, 2015, 30(5): 1809-1811. DOI: CNKI:SUN:BXYY.0.2015-05-094.
[19] 王帅, 刘志华, 王琳, 等. 脑卒中后肩痛患者肩部红外热成像观察[J]. 中国康复医学杂志, 2014, 29(7): 645-649. DOI: 10.3969/j.issn.1001-1242.2014.07.012
[20]Owen R, Ramlakhan S, Saatchi R, et al. Development of a high-resolution infrared thermographic imaging method as a diagnostic tool for acute undifferentiated limp in young children[J]. Med Biol Eng Comput, 2018, 56(6): 1115-1125. DOI: 10.1007/s11517-017-1749-0.
[21]Ioannou S, Gallese V, Merla A. Thermal infrared imaging in psychophysiology: potentialities and limits[J]. Psychophysiology, 2014, 51(10): 951-963. DOI: 10.1111/psyp.12243. Epub 2014 Jun 24.
[22] van Doremalen RFM, van Netten JJ, van Baal JG, et al. Infrared 3D thermography for inflammation detection in diabetic foot disease: a proof of concept[J]. J Diabetes Sci Technol, 2020, 14(1): 46-54. DOI: 10.1177/1932296819854062.
[23] Knobel-Dail RB, Holditch-Davis D, Sloane R, et al. Body temperature in premature infants during the first week of life: exploration using infrared thermal imaging[J]. J Therm Biol, 2017, 69: 118-123. DOI: 10.1016/j.jtherbio.2017.06.005.
[24] Snekhalatha U, Rajalakshmi T, Gopikrishnan M, et al. Computer-based automated analysis of X-ray and thermal imaging of knee region in evaluation of rheumatoid arthritis[J]. Proc Inst Mech Eng H, 2017, 231(12): 1178-1187. DOI: 10.1177/0954411917737329.
[25] Neves EB, Salamunes ACC, de Oliveira RM, et al. Effect of body fat and gender on body temperature distribution[J]. J Therm Biol, 2017, 70(Pt B): 1-8. DOI: 10.1016/j.jtherbio.2017.10.017.
[26] Law J, Chalmers J, Morris DE, et al. The use of infrared thermography in the measurement and characterization of brown adipose tissue activation[J]. Temperature (Austin), 2018, 5(2): 147-161. DOI: 10.1080/23328940.2017.1397085.
[27] Jones D, Covins SF, Miller GE, et al. Infrared thermographic analysis of surface temperature of the hands during exposure to normobaric hypoxia[J]. High Alt Med Biol, 2018, 19(4): 388-393. DOI: 10.1089/ham.2018.0008.
[28] De Stefani E, Ardizzi M, Nicolini Y, et al. Children with facial paralysis due to Moebius syndrome exhibit reduced autonomic modulation during emotion processing[J]. J Neurodev Disord, 2019, 11(1): 12. DOI: 10.1186/s11689-019-9272-2.
[29] Ismail E, Orlando G, Corradini ML, et al. Differential diagnosis of Raynaud's phenomenon based on modeling of finger thermoregulation[J]. Physiol Meas, 2014, 35(4): 703-716. DOI: 10.1088/0967-3334/35/4/703.
[30] Wu Y, Nieuwenhoff MD, Huygen FJPM, et al. Characterizing human skin blood flow regulation in response to different local skin temperature perturbations[J]. Microvasc Res, 2017, 111: 96-102. DOI: doi: 10.1016/j.mvr.2016.12.007.