三维重建及3D打印技术在骨盆三维特征测量准确性研究

张勇, 张雁儒, 杨云峰, 陆炎, 童朝辉

中国临床解剖学杂志 ›› 2020, Vol. 38 ›› Issue (6) : 697-702.

中国临床解剖学杂志 ›› 2020, Vol. 38 ›› Issue (6) : 697-702. DOI: 10.13418/j.issn.1001-165x.2020.06.014
临床生物力学

三维重建及3D打印技术在骨盆三维特征测量准确性研究

  • 张勇1, 张雁儒2,3, 杨云峰1, 陆炎1, 童朝辉1
作者信息 +

Study on the accuracy of three dimensional reconstruction and three dimensional printing technique in the measurement of pelvic three dimensional features

  • ZHANG Yong1 , ZHANG Yan-ru2,3 , YANG Yun-feng1 , LU Yan1 , TONG Zhao-hui1
Author information +
文章历史 +

摘要

目的 研究分析尸体骨盆与其三维重建数字化模型及3D打印实体模型的三维特征测量结果差异。  方法 选择1具中年男性骨盆标本,根据骨盆的生理学结构特点在骨盆标本表面选取并固定共计14个特征点,并使用三坐标仪测量并记录特征点的三维坐标;使用CT设备对固定了特征点的骨盆标本进行1.0 mm的断层扫描;使用三维医学图像软件(Delta Medical Studio,DMS)对获取的扫描图像进行三维重建,并记录特征点的三维坐标;使用3D打印设备(熔融沉积成型,FDM)及光固化成型(Stereo Lithography Appearance,SLA)打印三维重建模型,三坐标仪测量记录特征点的三维坐标;通过记录的三维坐标分别计算尸体标本、数字模型、3D打印实体模型的特征点之间的距离及夹角;从最大误差、平均误差、t值验证等角度分析三组数据的误差情况。  结果 三维重建数字化骨盆模型的特征测量距离的平均误差约为0.5 mm,角度平均误差约为0.35 o;3D打印模型相对于骨盆标本的距离测量的平均误差约为0.8~1.1 mm,角度平均误差约为0.4°~0.5°。  结论    三维重建模型和3D打印实体模型对于骨盆术前的参考及测量精度方面具备可靠性,可根据实际需求选择3D打印模型作为骨盆术前规划的参考。

Abstract

Objective To evaluate the differences among the 3D measurement results of the cadaver pelvis, its digital 3D reconstruction model and 3D printing models.  Methods  A middle-aged male pelvic specimen was selected and a total of 14 feature points were selected and fixed on the surface of the pelvic specimen according to the physiological structure characteristics of the pelvis. The 1mm CT scan was performed on this pelvic specimen with fixed feature points. The Delta Medical Studio (DMS) was used to reconstruct the scanned image and record the 3D coordinates of the feature points. The 3D reconstruction model was printed by the 3D printing equipment (Melt deposiition modeling, FDM and Stereo Lithography Appearance, SLA), and the 3D coordinates of the recorded feature points were measured by a CMM. The distances and the angles among the feature points of the cadaver specimen, the digital model and the 3D printing solid models were calculated through the recorded 3D coordinates. The errors of the three groups of data were analyzed from the perspectives of maximum error, average error and t-value verification. Results   The mean distance and angle measurement errors of the digital 3D reconstruction pelvic model were about 0.5mm and 0.35 degree, respectively. The mean distance error of the 3D printing models was about 0.8 ~ 1.1mm, and the mean angle error was about 0.4~0.5 degree. Conclusions The 3D reconstruction model and the 3D printing models are reliable for the preoperative reference of the pelvis in terms of the accuracy of feature measurement. The 3D reconstruction model or the 3D printing model can be selected as the reference object for the preoperative planning of the pelvis according to the actual needs.

关键词

骨盆 /  三维重建 /  3D打印 /  距离测量 /  角度测量 /  误差分析

Key words

Pelvis /  3D reconstruction /  3D printing /  Distance measurement /  Angle measurement /  The error analysis

引用本文

导出引用
张勇, 张雁儒, 杨云峰, 陆炎, 童朝辉. 三维重建及3D打印技术在骨盆三维特征测量准确性研究[J]. 中国临床解剖学杂志. 2020, 38(6): 697-702 https://doi.org/10.13418/j.issn.1001-165x.2020.06.014
ZHANG Yong , ZHANG Yan-ru , YANG Yun-feng , LU Yan , TONG Zhao-hui. Study on the accuracy of three dimensional reconstruction and three dimensional printing technique in the measurement of pelvic three dimensional features[J]. Chinese Journal of Clinical Anatomy. 2020, 38(6): 697-702 https://doi.org/10.13418/j.issn.1001-165x.2020.06.014
中图分类号: R687.1   

参考文献

[1]  Upex P, Jouffroy P, Riouallon G. Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis[J]. Orthop Traumatol Surg Res, 2017, 103(3):331-334.
[2] Ferdinando A, Stefania M. 3D printing: clinical applications in orthopaedics and traumatology[J]. EFORT Open Rev, 2016, 1(5):121-127.
[3]  Matsumoto JS, Morris JM, Foley TA, et al. Three-dimensional physical modeling: applications and experience at Mayo Clinic[J]. Radiographics, 2015, 35(7):1989-2006.
[4]  Mika S. Possibilities of preoperative medical models made by 3D printing or additive manufacturing[J]. J Med Eng, 2016, doi: 10.1155/2016/6191526.
[5]  Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist. radiograhics[J]. Radiographics, 2015, 35(7):1965-1988.
[6]  An G, Hong L, Zhou XB , et al. Accuracy and efficiency of computer-aided anatomical analysis using 3D visualization software based on semi-automated and automated segmentations[J]. Ann Anat, 2017, 210(1):76-83.
[7] Leng S, Mcgee K, Morris J, et al. Anatomic modeling using 3D printing: quality assurance and optimization[J]. 3D Print Med, 2017, 3(1):6.
[8]  Wu XB, Wang JQ, Zhao CP, et al. Printed three-dimensional anatomic templates for virtual preoperative planning before reconstruction of old pelvic injuries: initial results[J]. Chin Med J, 2015, 128(4):477-482.
[9]  尤微, 王大平, 张世权, 等. CT扫描层厚参数对骨组织3D打印模型精度影响的研究[J]. 中国数字医学, 2017,12(9):85-88.
[10]Wang J,Liu Y,Zhang XL, et al. Application of Mimics software to 3D reconstruction of medical image[J]. Chinese Medical Equipment Journal, 2015, 2(1):1-1.

[11]Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9):1323-1341.

[12]曹桂平, 张明娇, 刘非, 等. Arigin 3D Pro软件与Mimics软件三维重建模型的精度研究[J]. 中国组织工程研究, 2018, 22(15):2384-2389.
[13]张雁儒. 精准微创个体化医疗、3D 打印及计算机导航技术在骨科临床的研究进展[J].宁波大学学报(理工版),2019:32(6):1-5.
[14]George E, Liacouras P, Rybicki FJ , et al. Measuring and establishing the accuracy and reproducibility of 3D, printed medical models[J]. Radiographics, 2017, 37(5):1424-1450.
[15]Qiang M, Chen Y, Zhang K, et al. Measurement of three-dimensional morphological characteristics of the calcaneus using CT image post-processing[J]. J Foot Ankle Res, 2014, 7(1):19.
[16]张恒辉, 曲扬, 陈晓军, 等. 数字化技术辅助的中国人髋臼朝向三维测量[J]. 上海交通大学学报(医学版), 2016, 36(9):1311-1316.
[17]向春玲,黄华军,张雁儒. 快速高仿真人骨有限元几何建模–基于 Mimics、Geomagic 及 Ansys 软件的应用[J].宁波大学学报(理工版),2019, 32(6):16-22.


Accesses

Citation

Detail

段落导航
相关文章

/