氧化应激与椎间盘退变的研究进展

刘祺, 杨舟, 朱青安

中国临床解剖学杂志 ›› 2020, Vol. 38 ›› Issue (3) : 363-366.

中国临床解剖学杂志 ›› 2020, Vol. 38 ›› Issue (3) : 363-366. DOI: 10.13418/j.issn.1001-165x.2020.03.025
综述

氧化应激与椎间盘退变的研究进展

  • 刘祺1, 2, 杨舟1, 朱青安1
作者信息 +

Research progress of oxidative stress and disc degeneration

  • LIU Qi1,2, YANG Zhou1, ZHU Qing-an1
Author information +
文章历史 +

引用本文

导出引用
刘祺, 杨舟, 朱青安. 氧化应激与椎间盘退变的研究进展[J]. 中国临床解剖学杂志. 2020, 38(3): 363-366 https://doi.org/10.13418/j.issn.1001-165x.2020.03.025
LIU Qi, YANG Zhou, ZHU Qing-an. Research progress of oxidative stress and disc degeneration[J]. Chinese Journal of Clinical Anatomy. 2020, 38(3): 363-366 https://doi.org/10.13418/j.issn.1001-165x.2020.03.025
中图分类号: R681.53   

参考文献

[1] Pulickal T, Boos J, Konieczny M, et al. MRI identifies biochemical alterations of intervertebral discs in patients with low back pain and radiculopathy[J]. Eur Radiol, 2019, 29(12): 6443-6446.
[2] Vo NV, Hartman RA, Patil PR, et al. Molecular mechanisms of biological aging in intervertebral discs[J]. J Orthop Res, 2016, 34(8): 1289-1306.
[3] Kauppila T, Kauppila J, Larsson NG. Mammalian mitochondria and aging: an Update[J]. Cell Metab, 2017, 25(1): 57-71.
[4] Suzuki S, Fujita N, Hosogane N, et al. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration[J]. Arthritis Res Ther, 2015, 17: 316.
[5] Dimozi A, Mavrogonatou E, Sklirou A, et al. Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells[J]. Eur Cell Mater, 2015, 30: 89-102, 103.
[6]  Schröder K. NADPH oxidases in bone homeostasis and osteoporosis[J]. Free Radic Biol Med, 2019, 132: 67-72.
[7] Huang YC, Urban JP, Luk KD. Intervertebral disc regeneration: do nutrients lead the way[J]? Nat Rev Rheumatol, 2014, 10(9): 561-566.
[8] Huang YC, Leung VY, Lu WW, et al. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc[J]. Spine J, 2013, 13(3): 352-362.
[9]  Lee DC, Adams CS, Albert TJ, et al. In situ oxygen utilization in the rat intervertebral disc[J]. J Anat, 2007, 210(3): 294-303.
[10] Gruber HE, Chow Y, Hoelscher GL, et al. Micromass culture of human anulus cells: morphology and extracellular matrix production[J]. Spine (Phila Pa 1976), 2010, 35(10): 1033-1038.
[11] Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015, 163(3): 560-569.
[12] Park JB, Byun CH, Park EY. Rat Notochordal cells undergo premature stress-induced senescence by high glucose[J]. Asian Spine J, 2015, 9(4): 495-502.
[13] Nasto LA, Robinson AR, Ngo K, et al. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration[J]. J Orthop Res, 2013, 31(7): 1150-1157.
[14] Gliemann L, Nyberg M, Hellsten Y. Nitric oxide and reactive oxygen species in limb vascular function: what is the effect of physical activity[J]? Free Radic Res, 2014, 48(1): 71-83.
[15] Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited[J]. Annu Rev Pathol, 2014, 9: 119-145.
[16] Sahoo S, Meijles DN, Pagano PJ. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases[J]? Clin Sci (Lond), 2016, 130(5): 317-335.
[17] Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-183.
[18] Davalli P, Mitic T, Caporali A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases[J]. Oxid Med Cell Longev, 2016, 2016: 3565127.
[19] Mavrogonatou E, Angelopoulou MT, Kletsas D. The catabolic effect of TNFalpha on bovine nucleus pulposus intervertebral disc cells and the restraining role of glucosamine sulfate in the TNFalpha-mediated up-regulation of MMP-3[J]. J Orthop Res, 2014, 32(12): 1701-1707.
[20] Chen JW, Ni BB, Li B, et al. The responses of autophagy and apoptosis to oxidative stress in nucleus pulposus cells: implications for disc degeneration[J]. Cell Physiol Biochem, 2014, 34(4): 1175-1189.
[21] Hou G, Lu H, Chen M, et al. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs[J]. Arch Gerontol Geriatr, 2014, 59(3): 665-669.
[22] Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90(1): 1-37.
[23] Peng B, Hou S, Shi Q, et al. The relationship between cartilage end-plate calcification and disc degeneration: an experimental study[J]. Chin Med J (Engl), 2001, 114(3): 308-312.
[24] Cai XY, Xia Y, Yang SH, et al. Ropivacaine- and bupivacaine-induced death of rabbit annulus fibrosus cells in vitro: involvement of the mitochondrial apoptotic pathway[J]. Osteoarthritis Cartilage, 2015, 23(10): 1763-1775.
[25] Chen JW, Ni BB, Zheng XF, et al. Hypoxia facilitates the survival of nucleus pulposus cells in serum deprivation by down-regulating excessive autophagy through restricting ROS generation[J]. Int J Biochem Cell Biol, 2015, 59:1-10.
[26] Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders[J]. Neurol Res, 2017, 39(1): 73-82.
[27] Gruber HE, Watts JA, Riley FE, et al. Mitochondrial bioenergetics, mass, and morphology are altered in cells of the degenerating human annulus[J]. J Orthop Res, 2013, 31(8): 1270-1275.
[28] Park JS, Park JB, Park IJ, et al. Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress[J]. Int Orthop, 2014, 38(6): 1311-1320.
[29] Park EY, Park JB. High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J]. Int Orthop, 2013, 37(12): 2507-2514.
[30] Feng C, Yang M, Lan M, et al. ROS: crucial intermediators in the pathogenesis of intervertebral disc degeneration[J]. Oxid Med Cell Longev, 2017, 2017: 5601593.
[31] Alvarez-Garcia O, Matsuzaki T, Olmer M, et al. Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration[J]. J Orthop Res, 2017, 35(12): 2682-2691.
[32] Gruber HE, Watts JA, Hoelscher GL, et al. Mitochondrial gene expression in the human annulus: in vivo data from annulus cells and selectively harvested senescent annulus cells[J]. Spine J, 2011, 11(8): 782-791.
[33] Bakirezer SD, Yaltirik CK, Kaya AH, et al. The evaluation of glutathione reductase and malondialdehyde levels in patients with lumbar disc degeneration disease[J]. In Vivo, 2019, 33(3): 811-814.
[34] León Fernández OS, Pantoja M, Díaz Soto MT, et al. Ozone oxidative post-conditioning reduces oxidative protein damage in patients with disc hernia[J]. Neurol Res, 2012, 34(1): 59-67.
[35] Ding F, Shao ZW, Xiong LM. Cell death in intervertebral disc degeneration[J]. Apoptosis, 2013, 18(7): 777-785.
[36] Kepler CK, Ponnappan RK, Tannoury CA, et al. The molecular basis of intervertebral disc degeneration[J]. Spine J, 2013, 13(3): 318-330.
[37] Yang L, Rong Z, Zeng M, et al. Pyrroloquinoline quinone protects nucleus pulposus cells from hydrogen peroxide-induced apoptosis by inhibiting the mitochondria-mediated pathway[J]. Eur Spine J, 2015, 24(8): 1702-1710.
[38] Zhang F, Zhao X, Shen H, et al. Molecular mechanisms of cell death in intervertebral disc degeneration (Review)[J]. Int J Mol Med, 2016, 37(6): 1439-1448.
[39] Zhang SJ, Yang W, Wang C, et al. Autophagy: a double-edged sword in intervertebral disk degeneration[J]. Clin Chim Acta, 2016, 457: 27-35.
[40] Feng C, Liu H, Yang M, et al. Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways[J]. Cell Cycle, 2016, 15(13): 1674-1684.
[41] Wang F, Cai F, Shi R, et al. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2016, 24(3): 398-408.
[42] Krupkova O, Handa J, Hlavna M, et al. The natural polyphenol epigallocatechin gallate protects intervertebral disc cells from oxidative stress[J]. Oxid Med Cell Longev, 2016, 2016: 7031397.
[43] Zhou N, Lin X, Dong W, et al. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway[J]. Sci Rep, 2016, 6: 22628.
[44] Krishnamoorthy D, Hoy RC, Natelson DM, et al. Dietary advanced glycation end-product consumption leads to mechanical stiffening of murine intervertebral discs[J]. Dis Model Mech, 2018, 11(12):  dmm036012.
[45] Yang D, Wang D, Shimer A, et al. Glutathione protects human nucleus pulposus cells from cell apoptosis and inhibition of matrix synthesis[J]. Connect Tissue Res, 2014, 55(2): 132-139.
[46] Scharf B, Clement CC, Yodmuang S, et al. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification[J]. Chem Biol, 2013, 20(7): 922-934.
[47] Cannizzo ES, Clement CC, Morozova K, et al. Age-related oxidative stress compromises endosomal proteostasis[J]. Cell Rep, 2012, 2(1): 136-149.
[48] Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content[J]. Nat Rev Rheumatol, 2014, 10(1): 44-56.
[49] Zheng G, Pan Z, Zhan Y, et al. TFEB protects nucleus pulposus cells against apoptosis and senescence via restoring autophagic flux[J]. Osteoarthritis Cartilage, 2019, 27(2): 347-357.
[50] Chen Y, Wu Y, Shi H, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition[J]. J Cell Mol Med, 2019, 23(3): 2136-2148.
[51] Yao M, Zhang J, Li Z, et al. Marein protects human nucleus pulposus cells against high glucose-induced injury and extracellular matrix degradation at least partly by inhibition of ROS/NF-kappaB pathway[J]. Int Immunopharmacol, 2020, 80: 106126.
[52] Song Y, Wang Z, Liu L, et al. 1, 4-Dihydropyridine (DHP) suppresses against oxidative stress in nucleus pulposus via activating sirtuin-1[J]. Biomed Pharmacother, 2020, 121: 109592.
[53] Guo MB, Wang DC, Liu HF, et al. Lupeol against high-glucose-induced apoptosis via enhancing the anti-oxidative stress in rabbit nucleus pulposus cells[J]. Eur Spine J, 2018, 27(10): 2609-2620.

基金

南方医科大学南方医院院长基金(2016Z021)

Accesses

Citation

Detail

段落导航
相关文章

/