目的 探讨抑制miR-200c表达对糖尿病肾病(diabetic nephropathy,DN)SD大鼠肾的保护作用及机制。 方法 采用高糖高脂饮食联合链脲佐菌素(streptozotocin,STZ)腹腔注射诱导建立SD大鼠DN模型,将造模成功的30只DN大鼠随机分为模型组和观察组,每组15只,同时取15只正常健康的SD大鼠作为对照组,造模成功后每7 d给予观察组大鼠尾静脉注射antagomir-200c(30 mg/kg),模型组和对照组给予尾静脉注射等量的生理盐水。8周后,检测大鼠血清肌酐(Cr)、尿素氮(BUN)和24 h尿蛋白定量水平,实时荧光定量PCR(qRT-PCR)检测肾组织中miR-200c的表达,HE染色观察肾组织病理学变化,活性氧簇(ROS)和丙二醛(MDA)试剂盒检测肾组织中ROS和MDA水平,Western blot检测肾组织中转化生长因子-β1(TGF-β1)、纤连蛋白(fibronectin)的水平。 结果 与对照组比较,模型组大鼠肾组织miR-200c表达、血清中BUN、Cr水平、24 h尿蛋白定量、肾间质损伤评分、ROS、MDA水平及TGF-β1、fibronectin蛋白表达均升高(P<0.05)。与模型组比较,观察组大鼠以上指标均降低(P<0.05)。 结论 miR-200c在STZ诱导的DN大鼠肾组织中表达升高,抑制miR-200c能够对DN大鼠的肾起到一定保护作用,可能与降低肾组织的氧化应激水平和对TGF-β1信号通路的抑制有关。
Abstract
Objective To explore the protection on the kidneys of streptozotocin (STZ)-induced diabetic nephropathy (DN) SD rats, and the related mechanism, by abating miR-200C. Methods The DN SD rat model was constructed through high-glucose and high-fat diet combined with intraperitoneal injection of STZ. Thirty successfully constructed DN model rats were randomly divided into a model group and an observation group, with 15 rats in each group. Additionally, 15 normal healthy SD rats were collected as the control group. After successful modeling, rats in observation group were given a tail vein injection of antagomir-200c (30 mg/kg) every 7 days, while those in model group and control group were given a tail vein injection of equivalent amounts of normal saline. Eight weeks later, the serum creatinine (Cr), blood urea nitrogen (BUN), and 24 h urine protein quantitation (UPQ) level in rats were detected. Meanwhile, miR-200c expression in renal tissues was detected through real-time fluorescence quantitative PCR (qRT-PCR). Histopathological changes in kidneys were observed through HE staining. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels in renal tissues were detected using the ROS and MDA detection kits. In addition, the protein levels of transforming growth factor-β1 (TGF-β1) and fibronectin in renal tissues were also detected through Western blot. Results Compared with the control group, miR-200c expression in renal tissues, serum BUN and Cr levels, 24 h UPQ, renal interstitial injury score, ROS and MDA levels, as well as TGF-β1 and fibronectin protein expression in the model group were all markedly elevated (P<0.05). Compared with the model group, the above indicators in the observation group were all markedly reduced (P<0.05). Conclusions miR-200c expression in the renal tissues of STZ-induced DN rats is up-regulated, and abation of miR-200c can partly protect the kidneys of DN rats, which may be related to the reduction of oxidative stress in kidney tissue and the inhibition of TGF-β1 signaling pathway.
关键词
大鼠 /
糖尿病肾病 /
miR-200c /
氧化应激 /
TGF-β1
Key words
Rat;  /
  /
Diabetic nephropathy;  /
  /
miR-200c;  /
  /
Oxidative stress;  /
  /
TGF-β1
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shimizu M, Wada T. Nephrotic syndrome in diabetic nephropathy and diabetes[J].Nihon Jinzo Gakkai Shi, 2014, 56(4): 500-509.
[2] Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals[J]. J Toxicol Pathol, 2018, 31(1): 23-34.
[3] Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets[J]. Ann N Y Acad Sci, 2015, 1353(1): 72-88.
[4] 高志强, 马云, 崔玉彬. 糖尿病肾病患者血清miR-200c与TGF-β_1、FN的相关性分析[J].山东医药, 2018, 58(14): 50-52.
[5] 王彤, 于德民, 于珮. β2糖蛋白1对糖尿病小鼠肾脏组织转化生长因子β1表达的影响[J].中华糖尿病杂志, 2015, 7(2):1 15-119.
[6] 杨烨, 张园园, 田燕燕, 等. 活性维生素D3对糖尿病肾病大鼠转化生长因子β1及相关因子的调节作用[J]. 中华内分泌代谢杂志, 2015, 31(1): 66-70.
[7] Chen J, Li D. Telbivudine attenuates UUO-induced renal fibrosis via TGF-β/Smad and NF-κB signaling[J]. Int Immunopharmacol, 2017, 55(1):1-8.
[8] Kato M, Natarajan R. Diabetic nephropathy--emerging epigenetic mechanisms[J]. Nat Rev Nephrol, 2014, 10(9): 517-530.
[9] Petrillo F, Iervolino A, Zacchia M, et al. MicroRNAs in renal diseases: a potential novel therapeutic target[J]. Kidney Dis (Basel), 2017, 3(3): 111-119.
[10]Bojmar L, Karlsson E, Elleqard S. The role of microRNA-200 in progression of human colorectal and breast cancer[ J]. PLoS One, 2013, 8(12): e84815.
[11]Djuranovic S, Nahvi A, Green R. A parsimonious model for gene regulation by miRNAs[J]. Science, 2011, 331(6017): 550-553.
[12]陈珺, 蔡晋宇, 杜翠, 等. MiR-200c与脏器纤维化的研究进展[J]. 中南大学学报(医学版), 2017, 42(02): 226-232.
[13] 杨烨, 张园园, 田燕燕, 等. 活性维生素D3对糖尿病肾病大鼠转化生长因子β1及相关因子的调节作用[J]. 中华内分泌代谢杂志, 2015, 31(1): 66-70.
[14] 陆美萍, 辛传伟, 杨明华, 等. 消渴平合剂对链脲佐菌素诱导的糖尿病肾病大鼠肾功能及miR-192的影响研究[J]. 中华中医药学刊, 2017, 35(5): 1285-1287, 1366.
[15] Kim BH, Lee ES, Choi R, et al. Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy[J]. Yonsei Med J, 2016, 57(3): 664-673.
[16] Arora MK, Singh UK. Oxidative stress: meeting multiple targets in pathogenesis of diabetic nephropathy[J]. Curr Drug Targets, 2014, 15(5): 531-538.
[17] Lan T, Liu W, Xie X, et al. Berberine suppresses high glucose-induced TGF-β1 and fibronectin synthesis in mesangial cells through inhibition of sphingosine kinase 1/AP-1 pathway[J]. Eur J Pharmacol, 2012, 697(1-3): 165-172.
[18] Valladares-Salgado A, Angeles-Martínez J, Rosas M, et al. Association of polymorphisms within the transforming growth factor-β1 gene with diabetic nephropathy and serum cholesterol and triglyceride concentrations[J]. Nephrology (Carlton), 2010, 15(6): 644-648.
基金
山东省医药卫生科技发展计划面上项目(2017WSA07016)